
Latency- and Resilience-Aware Networking
SPP 1914: “Cyber-Physical Networking”
http://larn.systems

Andreas Schmidt, Pablo Gil Pereira, Thorsten Herfet
Telecommunications Lab
Saarland Informatics Campus - Saarbrücken

Stefan Reif, Timo Hönig, Wolfgang Schröder-Preikschat
Department of Computer Science 4 (Distributed Systems and Operating Systems)
Friedrich-Alexander-Universität Erlangen-Nürnberg

April 23rd, 2018

http://larn.systems


Recapitulation: Goals

Hardware

Operating System

PRRT

Application
Tailor PRRT to control applications

Improve PRRT’s performance

OS for predictable communication

Tailor network to control applications

2 / 18



Outcome (since October 2017)

Software, Hardware & Algorithms
PRRT Predictable Reliable Real-time Transport protocol

- Packet Loss Measurement / Estimation

- BBR-based Congestion Control & Bottleneck Bandwidth Estimation

- Cross-layer Pacing between Application and Network

- API: Ordered Receive Modes, many other improvements

X-Lap Cross-Layer Timing Analysis

- Automated Detection of Causes of Latency & Jitter

- Automated Control-Flow Graph Extraction

- Energy Evaluations

RNA Reliable Networking Atom

- Autonomous-Driving Car Scenario (BarCamp II)

- Wireless Embedded Real-Time Video Streaming Experiments

3 / 18



Outcome (since October 2017)

Software, Hardware & Algorithms
PRRT Predictable Reliable Real-time Transport protocol

- Packet Loss Measurement / Estimation

- BBR-based Congestion Control & Bottleneck Bandwidth Estimation

- Cross-layer Pacing between Application and Network

- API: Ordered Receive Modes, many other improvements

X-Lap Cross-Layer Timing Analysis

- Automated Detection of Causes of Latency & Jitter

- Automated Control-Flow Graph Extraction

- Energy Evaluations

RNA Reliable Networking Atom

- Autonomous-Driving Car Scenario (BarCamp II)

- Wireless Embedded Real-Time Video Streaming Experiments

3 / 18



Outcome (since October 2017)

Software, Hardware & Algorithms
PRRT Predictable Reliable Real-time Transport protocol

- Packet Loss Measurement / Estimation

- BBR-based Congestion Control & Bottleneck Bandwidth Estimation

- Cross-layer Pacing between Application and Network

- API: Ordered Receive Modes, many other improvements

X-Lap Cross-Layer Timing Analysis

- Automated Detection of Causes of Latency & Jitter

- Automated Control-Flow Graph Extraction

- Energy Evaluations

RNA Reliable Networking Atom

- Autonomous-Driving Car Scenario (BarCamp II)

- Wireless Embedded Real-Time Video Streaming Experiments

3 / 18



Outline

Status

PRRT

RNA

Conclusion

4 / 18



Cross-Layer Pacing - Motivation

Definitions

▶ Pace := Time required to apply a certain step to a certain unit of data.
(e.g. propagation time per packet or sampling time per sensor reading)

▶ A (sub-)system implements pacing iff it ensures that each step is executed at a
pace that considers the bottleneck pace in the overall system’s chain of
processing steps.

Invariant: Minimum pace in a system defines overall “throughput” of a system.

Cross-Layer Pacing

▶ Measure paces of all layers: network, application, system.
▶ Synchronise all the paces of all layers to the minimal pace.
▶ ... rinse, repeat.

5 / 18



Cross-Layer Pacing - Motivation

Definitions

▶ Pace := Time required to apply a certain step to a certain unit of data.
(e.g. propagation time per packet or sampling time per sensor reading)

▶ A (sub-)system implements pacing iff it ensures that each step is executed at a
pace that considers the bottleneck pace in the overall system’s chain of
processing steps.

Invariant: Minimum pace in a system defines overall “throughput” of a system.

Cross-Layer Pacing

▶ Measure paces of all layers: network, application, system.
▶ Synchronise all the paces of all layers to the minimal pace.
▶ ... rinse, repeat.

5 / 18



Cross-Layer Pacing - Motivation

Definitions

▶ Pace := Time required to apply a certain step to a certain unit of data.
(e.g. propagation time per packet or sampling time per sensor reading)

▶ A (sub-)system implements pacing iff it ensures that each step is executed at a
pace that considers the bottleneck pace in the overall system’s chain of
processing steps.

Invariant: Minimum pace in a system defines overall “throughput” of a system.

Cross-Layer Pacing

▶ Measure paces of all layers: network, application, system.

▶ Synchronise all the paces of all layers to the minimal pace.
▶ ... rinse, repeat.

5 / 18



Cross-Layer Pacing - Motivation

Definitions

▶ Pace := Time required to apply a certain step to a certain unit of data.
(e.g. propagation time per packet or sampling time per sensor reading)

▶ A (sub-)system implements pacing iff it ensures that each step is executed at a
pace that considers the bottleneck pace in the overall system’s chain of
processing steps.

Invariant: Minimum pace in a system defines overall “throughput” of a system.

Cross-Layer Pacing

▶ Measure paces of all layers: network, application, system.
▶ Synchronise all the paces of all layers to the minimal pace.

▶ ... rinse, repeat.

5 / 18



Cross-Layer Pacing - Motivation

Definitions

▶ Pace := Time required to apply a certain step to a certain unit of data.
(e.g. propagation time per packet or sampling time per sensor reading)

▶ A (sub-)system implements pacing iff it ensures that each step is executed at a
pace that considers the bottleneck pace in the overall system’s chain of
processing steps.

Invariant: Minimum pace in a system defines overall “throughput” of a system.

Cross-Layer Pacing

▶ Measure paces of all layers: network, application, system.
▶ Synchronise all the paces of all layers to the minimal pace.
▶ ... rinse, repeat.

5 / 18



Cross-Layer Pacing - Benefits

Near Zero Queuing Delay

▶ Network bottleneck bandwidth measured: Minimal bound on interval between
packets of given size.

▶ If adhering to this interval, packets arrive at either an idle link or an empty buffer.

Just-In Time Processing

▶ Application pace allows to anticipate a send() call.
▶ Preparatory tasks, e.g. memory allocation, thread wakeups, can be done in prior.

Reduced “Waste”

▶ The operating system and physical computing platform can run exactly at the
speed of application and transport layer.

▶ This allows to reduce clock-cycles, by avoiding polling, or slow-down the
processor to prolong the lifetime of battery-driven devices.

6 / 18



Cross-Layer Pacing - Benefits

Near Zero Queuing Delay

▶ Network bottleneck bandwidth measured: Minimal bound on interval between
packets of given size.

▶ If adhering to this interval, packets arrive at either an idle link or an empty buffer.

Just-In Time Processing

▶ Application pace allows to anticipate a send() call.
▶ Preparatory tasks, e.g. memory allocation, thread wakeups, can be done in prior.

Reduced “Waste”

▶ The operating system and physical computing platform can run exactly at the
speed of application and transport layer.

▶ This allows to reduce clock-cycles, by avoiding polling, or slow-down the
processor to prolong the lifetime of battery-driven devices.

6 / 18



Cross-Layer Pacing - Benefits

Near Zero Queuing Delay

▶ Network bottleneck bandwidth measured: Minimal bound on interval between
packets of given size.

▶ If adhering to this interval, packets arrive at either an idle link or an empty buffer.

Just-In Time Processing

▶ Application pace allows to anticipate a send() call.
▶ Preparatory tasks, e.g. memory allocation, thread wakeups, can be done in prior.

Reduced “Waste”

▶ The operating system and physical computing platform can run exactly at the
speed of application and transport layer.

▶ This allows to reduce clock-cycles, by avoiding polling, or slow-down the
processor to prolong the lifetime of battery-driven devices.

6 / 18



Cross-Layer Pacing - Network and Application

Background

▶ Channel limited by BtlBw , which can be measured using BBR [Google’16].
▶ Application sends packets of size L and with frequency f (data rate Rapp = L · f ).

Cross-Layer Pacing ensures BtlBw ≡ Rapp by controlling f .

Implementation

▶ The BBR algorithm paces packets to the bottleneck bandwidth.
▶ The application is allowed to place one packet in the socket and the next send()

call block until the packet is sent to the wire (after pacing period has passed).
▶ Alternatives:

▶ The application can query the socket for the bottleneck and adjust its sampling
rate or sensor resolution.

▶ The operating system “slows down” the application.

7 / 18



Cross-Layer Pacing - Network and Application

Background

▶ Channel limited by BtlBw , which can be measured using BBR [Google’16].
▶ Application sends packets of size L and with frequency f (data rate Rapp = L · f ).

Cross-Layer Pacing ensures BtlBw ≡ Rapp by controlling f .

Implementation

▶ The BBR algorithm paces packets to the bottleneck bandwidth.
▶ The application is allowed to place one packet in the socket and the next send()

call block until the packet is sent to the wire (after pacing period has passed).
▶ Alternatives:

▶ The application can query the socket for the bottleneck and adjust its sampling
rate or sensor resolution.

▶ The operating system “slows down” the application.

7 / 18



Cross-Layer Pacing - Experiments

0 1000 2000 3000 4000 5000
Round Number

101

102

D
el

iv
er

yT
im

e 
[m

s]

PRRT BBR
TCP CUBIC
TCP BBR

Results

▶ Delivery times within 1− 4× the propagation delay for most of the cases.
▶ PRRT achieves near-zero queueing after startup phase.
▶ In spite of limited send buffers, TCP cannot achieve this.

PRRT + BBR we can effectively pace an application to the speed of the network.
8 / 18



Cross-Layer Pacing - Future Work

So far, we only synchronise the pace of the application and the network.

Time
expected produce

App
HW execution time

ideal activation

execution time

ideal activation expected transmit

Operating System

▶ Pacing-aware scheduling.
▶ Energy-efficient pacing.

Hardware

▶ Measure maximum pace.
▶ Synchronise node-local and global paces (CPU throttling).

9 / 18



Cross-Layer Pacing - Future Work

So far, we only synchronise the pace of the application and the network.

Time
expected produce

App

HW

execution time

ideal activation

execution time

ideal activation expected transmit

Operating System

▶ Pacing-aware scheduling.
▶ Energy-efficient pacing.

Hardware

▶ Measure maximum pace.
▶ Synchronise node-local and global paces (CPU throttling).

9 / 18



Cross-Layer Pacing - Future Work

So far, we only synchronise the pace of the application and the network.

Time
expected produce

App

HW

execution time

ideal activation

execution time

ideal activation expected transmit

Operating System

▶ Pacing-aware scheduling.
▶ Energy-efficient pacing.

Hardware

▶ Measure maximum pace.
▶ Synchronise node-local and global paces (CPU throttling).

9 / 18



Cross-Layer Pacing - Future Work

So far, we only synchronise the pace of the application and the network.

Time
expected produce

App

HW execution time

ideal activation

execution time

ideal activation expected transmit

Operating System

▶ Pacing-aware scheduling.
▶ Energy-efficient pacing.

Hardware

▶ Measure maximum pace.
▶ Synchronise node-local and global paces (CPU throttling).

9 / 18



Cross-Layer Pacing - Future Work

So far, we only synchronise the pace of the application and the network.

Time
expected produce

App

HW execution time

ideal activation

execution time

ideal activation

expected transmit

Operating System

▶ Pacing-aware scheduling.
▶ Energy-efficient pacing.

Hardware

▶ Measure maximum pace.
▶ Synchronise node-local and global paces (CPU throttling).

9 / 18



Cross-Layer Pacing - Future Work

So far, we only synchronise the pace of the application and the network.

Time
expected produce

App

HW execution time

ideal activation

execution time

ideal activation expected transmit

Operating System

▶ Pacing-aware scheduling.
▶ Energy-efficient pacing.

Hardware

▶ Measure maximum pace.
▶ Synchronise node-local and global paces (CPU throttling).

9 / 18



Cross-Layer Pacing - Future Work

So far, we only synchronise the pace of the application and the network.

Time
expected produce

App
HW

execution time

ideal activation

execution time

ideal activation

expected transmit

Operating System

▶ Pacing-aware scheduling.
▶ Energy-efficient pacing.

Hardware

▶ Measure maximum pace.
▶ Synchronise node-local and global paces (CPU throttling).

9 / 18



Outline

Status

PRRT

RNA

Conclusion

10 / 18



RNA: Autonomous Driving Car

System

▶ Raspberry Pi 3 (w/ 802.11n)
▶ Pi Camera
▶ Chassis and Motor HAT
▶ Ultrasonic Sensors

Line-Following (“Autonomous Driving”)

▶ Camera captures line and transmits
video via PRRT.

▶ Edge controller extracts line,
determines angle, and determines
control outputs.

▶ Target speed transmitted back and
applied on the motor.

Edge2Car Communication

Car-Following (“Platooning”)

▶ First car follows line.
▶ Second car follows but keeps distance

to first car.

Car2Car Communication

11 / 18



RNA: Autonomous Driving Car

System

▶ Raspberry Pi 3 (w/ 802.11n)
▶ Pi Camera
▶ Chassis and Motor HAT
▶ Ultrasonic Sensors

Line-Following (“Autonomous Driving”)

▶ Camera captures line and transmits
video via PRRT.

▶ Edge controller extracts line,
determines angle, and determines
control outputs.

▶ Target speed transmitted back and
applied on the motor.

Edge2Car Communication

Car-Following (“Platooning”)

▶ First car follows line.
▶ Second car follows but keeps distance

to first car.

Car2Car Communication

11 / 18



RNA: Autonomous Driving Car

System

▶ Raspberry Pi 3 (w/ 802.11n)
▶ Pi Camera
▶ Chassis and Motor HAT
▶ Ultrasonic Sensors

Line-Following (“Autonomous Driving”)

▶ Camera captures line and transmits
video via PRRT.

▶ Edge controller extracts line,
determines angle, and determines
control outputs.

▶ Target speed transmitted back and
applied on the motor.

Edge2Car Communication

Car-Following (“Platooning”)

▶ First car follows line.
▶ Second car follows but keeps distance

to first car.

Car2Car Communication
11 / 18



RNA: Drone

System

▶ Pi Zero W + Pi Camera
▶ CrazyFlie (from BitCraze.io)

▶ Optical flow sensor (X,Y position).
▶ Laser-based ranging (Z position).

1. Mobile Real-time Video Streaming

▶ PHY/MAC: 802.11n
▶ NET: IP
▶ TRANS: PRRT

Goal: Reliable & Timely Video Stream

2. Edge-based Remote Control

▶ PHY/MAC: CrazyRadio
▶ NET: None
▶ TRANS: PRRT

Goal: Stable Flight with Minimal
Control inside the Drone

Currently negotiating/prototyping together with BitCraze.
Evaluation starting approx. Jun/Jul’18.

12 / 18



RNA: Drone

System

▶ Pi Zero W + Pi Camera
▶ CrazyFlie (from BitCraze.io)

▶ Optical flow sensor (X,Y position).
▶ Laser-based ranging (Z position).

1. Mobile Real-time Video Streaming

▶ PHY/MAC: 802.11n
▶ NET: IP
▶ TRANS: PRRT

Goal: Reliable & Timely Video Stream

2. Edge-based Remote Control

▶ PHY/MAC: CrazyRadio
▶ NET: None
▶ TRANS: PRRT

Goal: Stable Flight with Minimal
Control inside the Drone

Currently negotiating/prototyping together with BitCraze.
Evaluation starting approx. Jun/Jul’18.

12 / 18



RNA: Drone

System

▶ Pi Zero W + Pi Camera
▶ CrazyFlie (from BitCraze.io)

▶ Optical flow sensor (X,Y position).
▶ Laser-based ranging (Z position).

1. Mobile Real-time Video Streaming

▶ PHY/MAC: 802.11n
▶ NET: IP
▶ TRANS: PRRT

Goal: Reliable & Timely Video Stream

2. Edge-based Remote Control

▶ PHY/MAC: CrazyRadio
▶ NET: None
▶ TRANS: PRRT

Goal: Stable Flight with Minimal
Control inside the Drone

Currently negotiating/prototyping together with BitCraze.
Evaluation starting approx. Jun/Jul’18.

12 / 18



RNA: Drone

System

▶ Pi Zero W + Pi Camera
▶ CrazyFlie (from BitCraze.io)

▶ Optical flow sensor (X,Y position).
▶ Laser-based ranging (Z position).

1. Mobile Real-time Video Streaming

▶ PHY/MAC: 802.11n
▶ NET: IP
▶ TRANS: PRRT

Goal: Reliable & Timely Video Stream

2. Edge-based Remote Control

▶ PHY/MAC: CrazyRadio
▶ NET: None
▶ TRANS: PRRT

Goal: Stable Flight with Minimal
Control inside the Drone

Currently negotiating/prototyping together with BitCraze.
Evaluation starting approx. Jun/Jul’18.

12 / 18



Outline

Status

PRRT

RNA

Conclusion

13 / 18



Outcome (since October 2017)

Accepted Publications

▶ Gil Pereira, Pablo; Schmidt, Andreas; Herfet, Thorsten: “Cross-Layer Effects on
Training Neural Algorithms for Video Streaming”, 28th ACM SIGMM Workshop on
Network and Operating Systems Support for Digital Audio and Video (NOSSDAV),
Amsterdam, Netherlands, June 2018

▶ Reif, Stefan; Schröder-Preikschat, Wolfgang: “A Predictable Synchronisation
Algorithm (Poster)”, 23rd Annual Symposium on Principles and Practice of Parallel
Programming (PPoPP), Vienna, Austria, February 2018

Publications Under Review
▶ Reif, Stefan; Schmidt, Andreas; Hönig, Timo; Herfet, Thorsten; Schröder-Preikschat,

Wolfgang: “Differential Energy-Efficiency and Timing Analysis for Real-Time
Networks”, 16th International Workshop on Real-Time Networks (ECRTS RTN),
Barcelona, Spain, July 2018

▶ Schmidt, Andreas; Reif, Stefan; Gil Pereira, Pablo; Hönig, Timo; Herfet, Thorsten;
Schröder-Preikschat, Wolfgang: “Cross-Layer Pacing for Predictable Low-Latency
Communication in Edge Computing”, USENIX Workshop on Hot Topics in Edge
Computing (HotEdge), Boston, USA, July 2018.

14 / 18



Outcome (since October 2017)

Accepted Publications

▶ Gil Pereira, Pablo; Schmidt, Andreas; Herfet, Thorsten: “Cross-Layer Effects on
Training Neural Algorithms for Video Streaming”, 28th ACM SIGMM Workshop on
Network and Operating Systems Support for Digital Audio and Video (NOSSDAV),
Amsterdam, Netherlands, June 2018

▶ Reif, Stefan; Schröder-Preikschat, Wolfgang: “A Predictable Synchronisation
Algorithm (Poster)”, 23rd Annual Symposium on Principles and Practice of Parallel
Programming (PPoPP), Vienna, Austria, February 2018

Publications Under Review
▶ Reif, Stefan; Schmidt, Andreas; Hönig, Timo; Herfet, Thorsten; Schröder-Preikschat,

Wolfgang: “Differential Energy-Efficiency and Timing Analysis for Real-Time
Networks”, 16th International Workshop on Real-Time Networks (ECRTS RTN),
Barcelona, Spain, July 2018

▶ Schmidt, Andreas; Reif, Stefan; Gil Pereira, Pablo; Hönig, Timo; Herfet, Thorsten;
Schröder-Preikschat, Wolfgang: “Cross-Layer Pacing for Predictable Low-Latency
Communication in Edge Computing”, USENIX Workshop on Hot Topics in Edge
Computing (HotEdge), Boston, USA, July 2018.

14 / 18



Achievements in Phase 1

 PRRT1 available for control and video applications as open source.
▶ Straightforward usage for C, Python, and Gstreamer projects.
▶ Compatibility with Linux on ARM and x86-64 platforms.

 PRRT packed within the RNA, running on different embedded platforms.
 Fine-grained analysis for causes of latency and jitter using X-Lap2.
 Reduced network layer latency and jitter using...

▶ hybrid error correction (FEQ + ARQ) by avoiding round-trips and
▶ cross-layer pacing with congestion control to avoid queuing delays.

 Reduced system layer latency and jitter by...
▶ efficient system architecture, and
▶ wait-free synchronisation between threads.

 Results documented in 7 accepted publications (2 conferences, 3 workshops,
2 posters) and 2 publications under submission.

 Supervision of 3 successful master theses.

The LARN Team
2 PIs, 1 PostDoc, 3 PhD students and 3 student assistants

1http://prrt.larn.systems
2http://xlap.larn.systems

15 / 18



Achievements in Phase 1

 PRRT1 available for control and video applications as open source.
▶ Straightforward usage for C, Python, and Gstreamer projects.
▶ Compatibility with Linux on ARM and x86-64 platforms.

 PRRT packed within the RNA, running on different embedded platforms.
 Fine-grained analysis for causes of latency and jitter using X-Lap2.
 Reduced network layer latency and jitter using...

▶ hybrid error correction (FEQ + ARQ) by avoiding round-trips and
▶ cross-layer pacing with congestion control to avoid queuing delays.

 Reduced system layer latency and jitter by...
▶ efficient system architecture, and
▶ wait-free synchronisation between threads.

 Results documented in 7 accepted publications (2 conferences, 3 workshops,
2 posters) and 2 publications under submission.

 Supervision of 3 successful master theses.

The LARN Team
2 PIs, 1 PostDoc, 3 PhD students and 3 student assistants

1http://prrt.larn.systems
2http://xlap.larn.systems

15 / 18



Work in Progress for Phase 1

 RNA Applications and Scenarios
 Autonomous driving car & . . .
 . . . platooning
 Drone for video streaming and control

 X-Lap
 Automated detection of causes for latency and jitter
 Correlation between energy demand ⇐⇒ processing speed

 PRRT
 Optimize error control for embedded platforms
 Transparent transmission segmentation evaluations
 Multicast support (NAKs, feedback suppression)

 Operating System Support
 Time-predictable synchronisation
 Cross-layer resource management

16 / 18



Work in Progress for Phase 1

 RNA Applications and Scenarios
 Autonomous driving car & . . .
 . . . platooning
 Drone for video streaming and control

 X-Lap
 Automated detection of causes for latency and jitter
 Correlation between energy demand ⇐⇒ processing speed

 PRRT
 Optimize error control for embedded platforms
 Transparent transmission segmentation evaluations
 Multicast support (NAKs, feedback suppression)

 Operating System Support
 Time-predictable synchronisation
 Cross-layer resource management

16 / 18



Work in Progress for Phase 1

 RNA Applications and Scenarios
 Autonomous driving car & . . .
 . . . platooning
 Drone for video streaming and control

 X-Lap
 Automated detection of causes for latency and jitter
 Correlation between energy demand ⇐⇒ processing speed

 PRRT
 Optimize error control for embedded platforms
 Transparent transmission segmentation evaluations
 Multicast support (NAKs, feedback suppression)

 Operating System Support
 Time-predictable synchronisation
 Cross-layer resource management

16 / 18



Work in Progress for Phase 1

 RNA Applications and Scenarios
 Autonomous driving car & . . .
 . . . platooning
 Drone for video streaming and control

 X-Lap
 Automated detection of causes for latency and jitter
 Correlation between energy demand ⇐⇒ processing speed

 PRRT
 Optimize error control for embedded platforms
 Transparent transmission segmentation evaluations
 Multicast support (NAKs, feedback suppression)

 Operating System Support
 Time-predictable synchronisation
 Cross-layer resource management

16 / 18



Research Focus for Phase 2

▶ Improve crosscutting system properties
▶ focus on energy efficiency: impact of runtime adaptations
▶ non-functional properties of networked systems (i.e. RNAs)
▶ system configuration of individual RNAs (i.e. local scope)

⇕
energy demand/latency of overall system (i.e. global scope)

▶ Identification and proactive avoidance of bottlenecks within system stack
▶ build „strain reliefs” to avoid emergence of bottlenecks
▶ proactively exploit a priori knowledge (i.e. system design)
▶ cooperative system-analysis (i.e. ahead of runtime + at runtime)

▶ Explore adaptation of Phase 1 research results to related research areas
▶ edge-computing environments (WIP): improve latency of edge components
▶ consider power-demand constraints (i.e. low power IoT devices)
▶ extended interweaving of network protocols and operating-system components

17 / 18



Research Focus for Phase 2

▶ Improve crosscutting system properties
▶ focus on energy efficiency: impact of runtime adaptations
▶ non-functional properties of networked systems (i.e. RNAs)
▶ system configuration of individual RNAs (i.e. local scope)

⇕
energy demand/latency of overall system (i.e. global scope)

▶ Identification and proactive avoidance of bottlenecks within system stack
▶ build „strain reliefs” to avoid emergence of bottlenecks
▶ proactively exploit a priori knowledge (i.e. system design)
▶ cooperative system-analysis (i.e. ahead of runtime + at runtime)

▶ Explore adaptation of Phase 1 research results to related research areas
▶ edge-computing environments (WIP): improve latency of edge components
▶ consider power-demand constraints (i.e. low power IoT devices)
▶ extended interweaving of network protocols and operating-system components

17 / 18



Research Focus for Phase 2

▶ Improve crosscutting system properties
▶ focus on energy efficiency: impact of runtime adaptations
▶ non-functional properties of networked systems (i.e. RNAs)
▶ system configuration of individual RNAs (i.e. local scope)

⇕
energy demand/latency of overall system (i.e. global scope)

▶ Identification and proactive avoidance of bottlenecks within system stack
▶ build „strain reliefs” to avoid emergence of bottlenecks
▶ proactively exploit a priori knowledge (i.e. system design)
▶ cooperative system-analysis (i.e. ahead of runtime + at runtime)

▶ Explore adaptation of Phase 1 research results to related research areas
▶ edge-computing environments (WIP): improve latency of edge components
▶ consider power-demand constraints (i.e. low power IoT devices)
▶ extended interweaving of network protocols and operating-system components

17 / 18



Conclusion

jkNetworkjk

 PRRT – Predictable protocol
 Network pacing

Operating System

 X-Lap – Timing measurement
 Wait-free synchronisation

Reliable Network Atom (RNA)
(Embedded Edge-Server, Car, Drone, ...)

+

▶ Integration
▶ Optimisation
▶ Cross-layer pacing

Thank you for your attention. Questions?

18 / 18



Conclusion

jkNetworkjk

 PRRT – Predictable protocol
 Network pacing

Operating System

 X-Lap – Timing measurement
 Wait-free synchronisation

Reliable Network Atom (RNA)
(Embedded Edge-Server, Car, Drone, ...)

+
▶ Integration
▶ Optimisation
▶ Cross-layer pacing

Thank you for your attention. Questions?

18 / 18



Conclusion

jkNetworkjk

 PRRT – Predictable protocol
 Network pacing

Operating System

 X-Lap – Timing measurement
 Wait-free synchronisation

Reliable Network Atom (RNA)
(Embedded Edge-Server, Car, Drone, ...)

+
▶ Integration
▶ Optimisation
▶ Cross-layer pacing

Thank you for your attention. Questions?

18 / 18


	Status
	PRRT
	RNA
	Conclusion

