Hands-On Cyber-Physical Networking (HoCPN) BarCamp II @ SPP1914 2nd Plenary Meeting in Berlin

Adwait Datar, Christine Kloock (Technische Universität Hamburg)
Timo Hönig, Stefan Reif (Friedrich-Alexander-University Erlangen-Nürnberg)
Florian Rosenthal (Karlsruhe Institute of Technology)
Thorsten Herfet, Andreas Schmidt (Saarland Informatics Campus)
24. Apr. 2018

Dec 2017 Commited to organize the HoCPN BarCamp.
Jan 2018 Planning, component purchase and prototyping of the networked cyber-physical system at SIC and FAU.
Feb 2018 Winter School in Arosa.
Mar 2018 Meeting at FAU \& several Skype conferences.
Apr 2018 Wrap-Up Talk in Berlin.

Dec 2017 Commited to organize the HoCPN BarCamp.
Jan 2018 Planning, component purchase and prototyping of the networked cyber-physical system at SIC and FAU.
Feb 2018 Winter School in Arosa.
Mar 2018 Meeting at FAU \& several Skype conferences.
Apr 2018 Wrap-Up Talk in Berlin.
Mid-End 2018 Publication and Demo of Results.

Minimal viable CPN to evaluate interactions between network, operating system and control in a practical implementation.

Line-Following (vision)

Edge2Car Communication \& Control

Car-Following (vision and ultrasound)
Car2Car Communication \& Control

Scenario \& Hardware

- Conception of non-standard scenario with control and network challenges.
- Prototype car design and implementation.

Systems \& Networking

- PRRT Optimization (APIs, Performance, ...)
- System Optimizations (Performance, ...)

Control

- Control Laws
- For angle-based line-following (+ Python implementation).
- For velocity-based car-following.
- Control concepts, sensoring ideas, ...

Networked Cyber-Physical System - Internals

Control Task: Line shall be vertical in front of the car and aligned in the middle \Rightarrow Orientation of the car shall be close to zero, ie., we want $\theta \approx 0$

- All wheels of the car are fixed and not steerable
\Rightarrow Differential-drive car
- Distance between right and left wheel: $L=12 \mathrm{~cm}$
- Camera is located right in the middle of front axle
- For velocity v_{d} of that spatial point we thus have: $v_{d}=\frac{v_{R}-v_{L}}{2}$, where v_{R}, v_{L} are the velocities of the wheels
- Moreover, for the rotation of the car it holds: $\omega=\dot{\theta}=\frac{v_{R}-v_{L}}{L}$
- For desired v_{d} and fixed sampling rate t_{A}, we can compute the required velocities v_{R}, v_{L} of the wheels using a simple P law, where gain is such that stability is ensured

Engineering

- Optimize line-following scenario.

1. Perform Camera calibration, i.e., determine intrinsic and extrinsic camera parameters
2. Optimize image processing
3. Implement more involved control laws, e.g., use PID or MPC

- Implement car-following scenario.

Research

- Publish a paper with the resulting prototype, faced challenges and research questions.
- SenseApp'18? Deadline ca. May'18
- ACM SAC'19? Deadline ca. Sept'18
- CyPhy'19? Deadline ca. Jan'19
- CPSWeek'19

