
PRRT Implementation & Usage

In the course of this thesis the predictably reliable real-time protocol has been imple-
mented into a runtime-loadable Linux kernel module1. The developed protocol stack
fulfills the protocol specification defined in Chapter 2. The protocol implementation,
conveniently integrates predictable reliability into networked applications as it wraps a
standard BSD socket interface with few protocol-specific modifications and extensions.
The source package includes small command line tools that implement PRRT’s main
features and allow for special configuration via command line options. Given a real-time
media source, the example tools conveniently set up a networked pipe that transmits the
source data between remote network sites with predictable reliability.

Protocol Interface

In addition to the host address and the source or destination port, which both define
the Transport Service Access Point (TSAP) of a transport layer protocol, PRRT requires
the exchange of additional information in order to enable the bidirectional error control.
As the protocol itself is connectionless, session initiation must be implemented on higher
layers in order to communicate the host addresses and ports for source data and feedback
transmission. In order to provide the required communication and functionality, a C++
Socket library maps the PRRT socket API to the related system calls of the BSD socket
interface and registers the required components in the PRRT protocol stack. The protocol
stack implements the predictably reliable error control, the reliability control and the
delay-based congestion control in a multi-threaded environment such that ordinary send()

and receive() calls at the PRRT hosts entirely abstract the complex protocol functionality.
As soon as a character buffer is written into the sender socket via send(), the protocol
stack determines the delivery deadline of the datagram and initiates the error control
operations.

the PRRT socket functionality that is implemented via a multi-threaded architecture
within the network stack. receive() obtains a packet not earlier than packet timeout such
that error control can is completed transparently.

use of connect and bind slightly modified since each PRRT session is bidirectional as
it requires a feedback channel.

The protocol’s programmer interface is defined in a C++ socket library as follows:

• prrt_socket() instantiates a new PRRT socket and allocates the required system
resources. The socket is registered in a global register file ... the state of all

1
Source code available for download under http://www.nt.uni-saarland.de/en/projects/running-

projects/prrt.html

1

PRRT sockets. For each PRRT socket, the library creates an entry in the Linux
/proc file system that returns information and statistics about the socket state
(current protocol parameters, number of source and repair packets sent/received),
the observed network state (PLR, RTT , CC) and the protocol performance (Pr,
RI).

• connect() sets up a sending PRRT socket. This function configures the desti-

nation address, the destination port as well as the feedback address. destination

address and destination port might identify either a unicast receiver or a multicast
group. feedback address identifies the local interface PRRT must listen at in or-
der to obtain receiver feedback. In order to benefit from feedback suppression in
multicast, feedback address should represent a multicast group. The feedback port
is automatically set to destination port + 1. The function returns successfully if
the required addresses and port numbers are valid and the automatically assigned
feedback port is not already in use.

• bind() sets up a receiving PRRT socket. This function configures the source ad-

dress, the source port as well as the feedback address. source address and source

port might identify either a local network interface of the receiver or a multicast
group. feedback address identifies the local interface PRRT must listen at in or-
der to obtain receiver feedback. In order to benefit from feedback suppression in
multicast, feedback address should represent a multicast group. The feedback port
is automatically set to destination port + 1. The function returns successfully if
the required addresses and port numbers are valid and the automatically assigned
feedback port is not already in use.

• close() closes the PRRT socket and de-allocates all system resources. The socket
is being deleted from the register file and the related entry in the /proc file system
is being removed.

• send() wraps a buffer of characters into a datagram of the required length and
sends it to the receiver socket.

• recv() receives a datagram of specific length from the sender socket and returns
the encapsulated buffer of characters.

• setsockopt() configure the PRRT socket via general UDP socket options and
special PRRT socket options such as delay constraint, reliability constraint, rate
constraint and manual settings for coding and protocol parameters.

• getsockopt() obtain the current settings for general UDP socket options and spe-
cial PRRT socket options.

Additional socket functions beyond the BSD interface

• getstats() returns current socket statistics such as the socket state (current proto-
col parameters, number of source and repair packets sent/received), the observed
network state (PLR, RTT , CC) and the protocol performance (Pr, RI).

2

• getstreamrate() returns the current goodput estimate for which the application’s
reliability requirement is satisfiable. If the application feeds data into the sender
socket at a rate beyond the obtained goodput estimate, it might experience in-
creased residual packet loss rate as PRRT’s packet scheduler masks away excessive
source and repair packets.

Example Tools

The following example tools implement a pair of simple PRRT sender and receiver. The
tools presented in the following have been applied in order to obtain the experimental
results in Chapter 6. They provide a simple self-test environment by transmitting an
artificial character source but also a networked pipe functionality between the endpoints
of a one-to-one or one-to-many real-time media streaming application. The tools export
special protocol options such as fixed configuration or activation and deactivation of
single protocol features.

Sender “prrtcat”

prrtcat is a PRRT-based sender application that implements connection-less streaming of
real-time source data to a unicast PRRT receiver or a multicast group of PRRT receivers.
Name and functionality are adopted from the POSIX tool netcat2, which reads character
data from the standard input and sends it to a remote socket via UDP or TCP. Similarly,
prrtcat reads data from the standard input and encapsulates them into PRRT packets
while performing the predictably reliable error control. Alternatively, the tool sends
out an artificial character stream with a specified real-time source rate. This option is
particularly interesting for a self-test or a performance measurement under evaluation of
the socket statistics at the receiver.

The software is configured via the following command line options:
Sender options:

-sp <port > destination port [default: 5004]

-suc <unicast address > unicast destination address

-smc <multicast address > multicast destination address

-fb <address > feedback address

-code <coding parameters > [default: 200,2,20,40,0,1,0,1,2]

i.e.: D_T(delay constraint)=200ms, D_C=2ms , D_FEC =20ms ,

D_REQ =40ms, D_FB=0ms , k=1, N_P=[0 1 2]

-g <target PLR > [default: 0.000001]

-j <data rate > Sends from an artificial data source with specified data

rate (in Kbps) instead of reading from stdin (default)

-ad <0|1|2> Enable adaptation [default: 0]

0: no adaptation

1: table lookup

2: online optimization

-i <update interval > update interval of the parameter adaptation in

milliseconds [default: 200]

2
http://linux.die.net/man/1/nc

3

Receiver “prrtrecv”

prrtrecv offers basic PRRT receiver functionality. The tool instantiates a PRRT receiver
socket and writes the received character buffers to the standard output. Except for the
congestion control and the feedback scheduling, the PRRT receiver is a purely passive
component that obtains all parameter settings via the corresponding protocol headers.
Therefore, prrtrecv does not provide any options for coding parameters and applica-
tion constraints. Bandwidth estimation is either provided by TFRC or a delay-based
congestion control equation.
Receiver options:

-rp <port > destination port (listen) [default: 5004]

-ruc <unicast address > unicast destination address (listen)

-rmc <multicast address > multicast destination address (listen)

-bw <0|1|2> enable bandwidth estimation [default: 0]

0: no bandwidth estimation

1: TCP -friendly rate control (TFRC)

2: delay -based congestion control

-i <updateInterval > update interval of the bandwidth estimation in

milliseconds [default: 200]

-fs <D_SUP > enable feedback suppression with maximum suppression

timer D_SUP [default: 0]

Example Usage

The following command lines provide some typical example usages of the prrtcat and
prrtrecv:

• Send from the artificial character source with a source rate of 5Mbps to the mul-
ticast group 224.0.1.2:5004 while specifying a delay constraint of 400ms and fixed
coding parameters with k = 1 and NP = [0, 1, 1, 4]:

$> prrtcat -j 5000 -code 400,1,20,40,0,1,0,1,1,4 -suc 224.0.1.2 -fb 224.0.1.2

• Set up a multicast receiver joining and listening to the group 224.0.1.2:5004 (char-
acter stream from standard output might be redirected to /dev/null) and sending
feedback with a maximum suppression timer of 50ms:

$> prrtrecv -fs 50 -rmc 224.0.1.2 224.0.1.2 [> /dev/null]

• Send from the artificial character source at sender 192.168.0.1 with adaptive source
rate to the unicast receiver 192.168.0.17:5004 under a delay constraint of 400ms
and enable online parameter adaptation with update interval 200ms:

$> prrtcat -j 0 -code 400,1,20,40,0,1,0,1,1,4 -ad 2 -i 200 -suc 192.168.0.17

-fb 192.168.0.1

4

• Set up the corresponding unicast receiver 192.168.0.17 sending feedback to 192.168.0.1
and returning a bandwidth estimate every 100ms

$> prrtrecv -bw 2 -i 100 -ruc 192.168.0.17 192.168.0.1 [> /dev/null]

• Set up an online-adaptive networked pipe with predictable reliability between stream-

ing_server at the sender 192.168.0.1 and media_renderer at the receiver 192.168.0.17.
streaming_server writes data to standard output and media_renderer reads from
standard input.

$> media_server | prrtcat -code 400,1,20,40,0,1,0,1,1,4 -ad 2

-i 200 -suc 192.168.0.17 -fb 192.168.0.1

$> prrtrecv -ruc 192.168.0.17 192.168.0.1 | media_renderer

• Obtain current socket state and protocol statistics from the /proc file system of an
PRRT socket identified via socket_number :

$> cat /proc/prrt/<socket_number >/ stats

5

