
PerfVis: Visualization of Timings in Network
Transmission

Marlene Böhmer
Saarland Informatics Campus

Saarland University
Saarbrücken, Germany

boehmer@cs.uni-saarland.de

Thorsten Herfet
Saarland Informatics Campus

Saarland University
Saarbrücken, Germany

herfet@cs.uni-saarland.de

Abstract—Analysing and optimizing the networking perfor-
mance of protocol stacks requires accessible tools capable of
presenting precise measurements in intuitive visualizations. Real-
time presentation of live data further increases the efficiency in
gaining insights, e.g. into cross-stack phenomena and configu-
ration changes of highly configurable networking technologies
such as 5G or 6G. In this context, we introduce PerfVis, a tool
designed to visualize network transmission timings. By one-way
measurements, the insights can be focused on direction-dependent
effects of single links or short paths. Case studies involving a 5G
campus network demonstrate how PerfVis can identify timing
effects on lower layers of the protocol stack and highlight its
capability to adapt measurements and visualizations for specific
analysis tasks.

Index Terms—Network communications, Performance evalua-
tion, Visualization, Real time, 5G

I. INTRODUCTION

Emerging networking technologies like 5G, 6G or Open
Ran are evolving to open and highly configurable network
functions and setups. This brings the benefit of customizable
networks but requires the tools and knowledge to optimize
configurations. While round trip times and delays provide
important information, they shed only limited light on cross-
layer and absolute timing effects. Understanding those is
important when optimizing, monitoring or troubleshooting
high-performance networks and low-latency or real-time ap-
plications. Additionally, detailed time and delay information
can help to find good configurations in highly configurable
wireless networks like 5G.

A common approach to analysing lower layers of the
protocol stack is measuring various parameters and visualizing
them in an accessible way, e.g. by eye diagrams or spectro-
grams. On higher layers, it is rather common to do statistical
measurements, e.g. of throughput or latency, and visualize the
statistical properties, e.g. by distributions. Both approaches are
important to highlight the characteristics of their metrics, but
timing is a characteristic that spans and is influenced by all
layers. Thus we suggest complementing measurement method-
ologies with timing measurements from various layers and
accessible visualizations to ease gaining insights. Depending
on what kind of timestamps are available, a visualization can
give an application layer perspective or allow effects to be
narrowed down to specific layers. Visualizations also need to

span multiple orders of magnitude as the order of magnitude
and the change rate of timing effects highly differ.

With this vision in mind, we developed PerfVis1 as a tool to
visualize the timing of packet transmissions and to get insight
into effects that distort timing during network transmissions.
The main contribution of PerfVis is the visualization of
timestamps from a network transmission measurement. With a
live mode, PerfVis can provide insights in real-time while also
supporting downstream analysis by saving measurement data.
Timestamps taken on the application layer include effects from
the full network protocol stack, thus they give an application
layer view. Timestamps from lower layers provide a different
view and enhance analysis. With its visualization, PerfVis
complements other tools and methodologies by providing a
quick visual insight into transmission timing effects at any
layer and can even be used to investigate effects at lower layers
when access to lower-layer logs is not available.

II. RELATED WORK

Different tools exist for measuring network latency, em-
ploying different methodologies. Traditional tools such as
Ping and TWAMP [1] measure round-trip time (RTT), while
OWAMP [2] focuses on one-way latency measurements.
Fabini et al. [3] highlight that end-to-end delay measure-
ments containing subsequent time-slotted links need special
measurement methodologies to give representative statistical
results. In a simple case, this already applies to an RTT
measurement of a 5G link. We do not introduce the suggested
start-time randomness in the test setup but choose one-way
measurements to not obscure effects occurring in one direction
with effects on the return path. A side effect of one-way
measurements is that synchronization plays a major role in
how timestamps drawn from different clock sources relate.
Grigorjew et al. [4] show that the source of the timestamps,
i.e. whether the source is the system time or an external PTP
(Precision Time Protocol) hardware clock, has—apart from
their different semantics—also influence on the accuracy of the
timestamps, which is important especially when investigating
low latencies.

1https://git.nt.uni-saarland.de/research-projects/independent/
performance-visualization/-/tree/enmeth25?ref type=tags



Furthermore, increasing the number of measurement points
on a path allows for more fine-grained analysis. In the same
philosophy, Orosz et al. [5] deal with multi-layer timestamping
including software and hardware timestamps with the help
of an FPGA. Reif et al. [6] present a mechanism of fine-
grained timing analysis within a network layer by gaining
timestamps from the instrumentation of the protocol code.
All those timestamps from different clock sources (system or
PTP hardware clocks) and different levels (application layer,
transport layer, ...) are valid for our visualization but come
with different efforts to obtain them.

Research has shown that a fitting visualization can enhance
the understanding of complex data and make it easier for
users to learn patterns, trends, and anomalies [7]. Reduced
waiting time from collecting the data to the visualization
being available plays a significant role in how efficient it is to
work with the data [8]. Thus we provide our tool with a live
mode. Standard tools for measuring network latency provide
valuable statistics but lack an intuitive visual presentation of
the results. When results are visualized, it is usually a simple
line or bar graph that has time on the abscissa and latency
or RTT on the ordinate. Gregg et al. [9] propose heat maps
as a powerful method for visualizing latency distributions
over time to highlight patterns that simple line graphs might
miss, such as the clustering of latency spikes or the impact
of specific events on overall performance. Di Bartolomeo et
al. [10] compare how different timeline layouts with recurrent
events affect readability. A slightly modified timeline layout
is the basis for our visualization of timestamps.

III. TOOL DESIGN AND IMPLEMENTATION

PerfVis is designed to provide intuitive visual insight into
the timing of network transmissions including judging delays
and jitter and identifying timing structures. It is flexible in
the protocol stack and traffic pattern to adapt to different
analysis scenarios and further aims to support different usage
scenarios by variable setup and viewing modes. Before diving
into the implementation and details of PerfVis, the following
two subsections introduce the visualization and its underlying
data.

A. Timestamps

The visualizations are created from timestamps. For a com-
plete view of the timing of packets traversing a network, times-
tamps from both transmission ends are required. Timestamps
from multiple sources give insight into the effects on specific
network protocol layers or sections of network transmission.
To be able to focus on single links and effects that only occur
in one direction, one-way measurements are used. PerfVis uses
built-in measurements but timestamps from external sources or
tools can be added as long as all timestamps are consistent,
so computing differences between them is valid. If this is
not the case for all timestamps, sets of timestamps that
fulfil the consistency requirement can be grouped for separate
visualization. As timestamps might originate from different
clocks that are not well synchronized, the question of time

(a)

(b) (c)

Fig. 1. Presentation of a one-dimensional timeline (a) in a two-dimensional
plot (c) by splitting the timeline into parts (b). This highlights periodic events
and deviations from the periodicity.

reference for visualization arises. The sender-side clock of the
highest layer timestamps is chosen as a reference because the
first timestamp of each packet transmission originates from
that clock.

Due to different clocks being involved in network transmis-
sion, clock effects and clock drifts will be part of the visu-
alization. To isolate timing effects occurring during network
transmission from the clock effects of the sender and receiver
clocks, these two clocks should be synchronized. Furthermore,
there are clocks in other parts of the transmission system, e.g.
the 5G RAN, that influence the transmission timing and the
effects of those clocks will show in visualizations.

B. Visualization Idea

As timing effects have completely different orders of mag-
nitude and change rates, the visualization has to be capable
of depicting multiple orders of magnitude and conveying the
notion of time. Video is a suitable format for that as it
inherently includes a notion of time and allows grasping timing
effects in different orders of magnitude, i.e. small-scale effects
within the presentation of a video frame and effects of a larger
scale over the frames of a video. The following explanation
assumes that a data set consisting of the send and receive
timestamps for each measurement packet is available and
assumes that the measurement packets were sent periodically
with interval i.

The key idea of the visualization is to sort all timestamps
on a timeline (Fig. 1a), split the timeline into parts (Fig. 1b)
and arrange subsequent parts as rows into images (Fig. 1c).
Subsequent images then yield an animation or video. The
dimensions of the image are characterized by the time chosen
to be in a row and the number of rows put into one image
nrows . To support the periodicity of the measurements it makes
sense to choose a row as a multiple of the interval i, such that
the time of a row is trow = ipr · i, where ipr is the number
of intervals per row. The interval i can be chosen freely, the
reasoning of choice could be to match application behaviour,
to match the periodicity of some timing effect or to produce
visualizations that are easy to interpret, e.g. when i is chosen
greater than the delay, all timestamps belonging to one packet
transmission will fall into the same row.



(a) (b)

Fig. 2. (a) In intermitted mode, sender and receiver save their measurement
data to a file, afterwards the visualizer reads the files and saves a video
or shows an animation. (b) In live mode, sender and receiver send the
measurement data directly to the visualizer which views an animation.

Visualizations created this way can give quick and intuitive
insights into timing effects of different kinds and orders
of magnitude. In the case of a continuous, periodic packet
transmission without effects that differ between the packets
or change over time, vertical lines are expected that stay in
their position over the images of a video. Deviations thereof
can easily be visually identified. Transmission timing effects
that change over time show up as shifts between rows and
between frames in the visualization. By choosing the time of
a row, also the order of magnitude of effects seen between
rows is defined. Equally, by choosing the number of rows, the
order of magnitude of effects between video frames is fixed.
For example, when a visualization is configured with 1000
rows of 1ms and a shift of 1 µs per video frames is identified,
then this change is 6 orders of magnitude smaller than the time
over which it changes but the shift is recognizable even in the
presence of static jitter with a higher order of magnitude.

C. Implementation

PerfVis is implemented in Python and consists of multiple
modules supporting different modes. The modes include an
intermitted mode (Fig. 2a) and a live mode (Fig. 2b). The
sender, receiver and visualizer modules are described in the
following.

1) Sender and Receiver: These two modules send measure-
ment packets from sender to receiver and collect timestamps
whenever a packet is sent or received on their side independent
of each other. The current state of the implementation is that
timestamps from two levels are collected automatically, firstly
application layer timestamps taken in the Python code called
Python timestamps and secondly kernel software timestamps.2

The kernel timestamps are enabled by setting the software
timestamping flags in the socket options of sockets used for
measurement. When sending or receiving packets via these
sockets, the kernel timestamps can be read from ancillary data
and give information about when a packet left or arrived in
the kernel. Depending on the mode, the sender and receiver
store data to file or, in the case of live mode, additionally send
it via TCP to the visualizer. Sending to the visualizer is done
from separate processes to not disturb the timing of sending
or receiving measurement traffic.

2https://www.kernel.org/doc/html/next/networking/timestamping.html

Fig. 3. Packet sequence of a PerfVis measurement.

At the beginning, a handshake makes sure that the con-
nection itself is functional and provides information about
periodicity and sender configuration to the receiver. This
allows for better timeout settings at the receiver without
manual configuration via the command line. After a startup
delay that is meant for the handshake to complete, the sender
periodically sends the measurement packets. Their relevant
content is only a slot number that specifies how many interval
times after starting the measurement the packet is supposed
to be sent (target send time) and a sequence number to
identify the packets and with those the sender and receiver side
timestamps that belong to the same packet (Fig. 3). Optionally
measurement packets can be padded for increased size. The
sender tries to send the packets close to the target timestamp
specified by the slot. The Python timestamps will not perfectly
hit the target due to scheduling of the operating system, but
as this information is included it can be part of later analysis.

2) Visualizer: The core task of the visualizer module is
to use the data from the sender and receiver to generate
animations. To achieve this, the visualizer converts all times-
tamps into x and y coordinates in images according to the
visualization as presented in Fig. 1c. Internally, an animated
matplotlib scatter plot enables showing the animation or saving
a video with a frame rate to view data in real-time. This frame
rate depends on the choice of the parameters i, ipr and nrows

which define how much time is represented in one image. The
real-time frame rate r = 1/(trow ·nrows) shows each image as
long as the time that is represented in that image. This might
lead to high or low frame rates that are not comfortable to
view but they ensure awareness of the actual timing and can
be adjusted to a comfortable speed in a video player of choice.
For live animations, when data processing and rendering of
the visualization happen in parallel, the effective frame rate
might not be definable as the real-time frame rate r. Depending
on the tools used, the effective frame rate will be limited or
even vary. To still provide real-time visualizations, the PerfVis
live mode adapts to the effective frame rate by repeating or
skipping images when necessary and reporting the effective
and real-time frame rates. For cases of live animation where
the real-time frame rate is low and the effective frame rate
is much higher, PerfVis provides an incremental option that
updates the image partly with the most recent data but this
can lead to visual breaks of continuously changing effects at
the point up to which the data is updated.



Fig. 4. Setup of a small cell 5G Campus Network connected to the wired
university network. Two paths have been measured: the LAN path (99K) from
the laptop via the university network to the server and the same way back
and the 5G path (→) from the laptop via the 5G router to the server and back
via the university network.

IV. EVALUATION

In the case of small network setups with only a few hops,
the influence of the timing effect of single links on the
overall timing is large, especially the influence of wireless
links in an otherwise wired network. This allows the analysis
of a wireless link, e.g. of a 5G link, from an end-to-end
measurement collecting timestamps. Our tool can help to
analyse its influence and get insight into the structure of
timing effects that statistical performance metrics hide. The
following evaluations give examples of PerfVis usage and
visualization capabilities.3 Even though the evaluations focus
on 5G, PerfVis is not limited or tight to that and could equally
be used to analyze 4G, Wifi or any other network connection.
However, the effects seen in the PerfVis visualizations of other
use cases might be different of course.

A. 5G Campus Network Slot Structure

The following evaluations are performed to analyse the
network transmission over a 5G campus network that is
integrated into the university’s network infrastructure (Fig. 4).
PerfVis sender and receiver have been executed on a laptop
which connected the measurement path to a loop with the
help of network namespaces. As—in this very special setup—
they draw their timestamps from the same clock, a perfect
synchronization between them is achieved. PerfVis has in all
cases been configured to transmit 5000 UDP (User Datagram
Protocol) measurement packets, save sender and receiver side
timestamps to file and save the animation to a video file
with video frames containing images with 200 rows. It should
be noted, that the interval between PerfVis packets has been
chosen to be 14ms after an initial test and estimation of delays,
as this time allows all receive times to be placed into the same
row as the send times. The images of PerfVis results show just
one frame from the video that the visualization creates.

As timing effects that the 5G network introduces should be
investigated, first, a baseline from the wired university network
is generated (Fig. 4). This is done by setting a route that forces
the traffic from the laptop over the university network to the
server and back over the university network to the laptop. The
result in Fig. 5 shows that the delay is below 0.5ms and shows
little jitter. Ping and TWAMP4 commands have been executed

3Code snippets, data and visualization videos can be found in the project
repository.

4TWAMP implementation used: https://github.com/emirica/twamp-protocol

• Target send time, • Python sent, • Kernel sent, • Kernel received, • Python received

Fig. 5. PerfVis visualization showing the send and receive timestamps of a
measurement over the LAN path (Fig. 4). The visualization is constructed as
described in Fig. 1.

Ping RTT TWAMP RTT
Format avg min max mdev avg min max jitter

LAN 1.015 0.689 184.294 4.930 0.998 0.809 1.617 0.064
5G 7.759 5.005 61.487 2.545 7.697 4.634 22.790 2.655

TWAMP FWD TWAMP RTD
Format avg min max avg min max

LAN 0.396 0.288 1.012 0.599 0.506 0.822
5G 4.421 1.592 16.729 3.273 2.819 12.258

Table 1. Ping and TWAMP results for the LAN and 5G paths (Fig. 4) also
evaluated with PerfVis. The TWAMP result can be split up into the forward
delay (FWD) and return delay (RTD).

using the same path, configured with 5000 packets and the
same packet interval of 14ms (Table 1). When considering
that Ping and TWAMP measure the RTT, while PerfVis only
includes one way, their average RTT around 1ms support the
same order of magnitude in delay and little jitter.

The next test spans the full loop starting and ending at the
laptop and including the 5G network in the uplink direction.
The PerfVis visualization (Fig. 6a) clearly shows that the
timings have a structure that was not seen in Fig. 5. Before in-
vestigating the structure seen in the PerfVis output, it is worth
comparing it to the Ping and TWAMP results (Table 1). As
the RTTs include both ways they are not expected to include
such a clear structure. However, the TWAMP implementation
outputs forward and backward delays, similar to an OWAMP
test, which can be expected to show a closer similarity with
the PerfVis timings. Yet, the TWAMP forward delay covering
the same path as the PerfVis test does not show a similarly
recognizable structure (Fig. 7).

A plausible hypothesis for the structure seen in the PerfVis
output is the 5G frame structure, which is shortly explained
in the following. The 5G time domain structure consists of
frames that are 10ms in length and, as our 5G campus network
operates with 30 kHz subcarrier spacing, each frame contains
20 slots of 0.5ms [11]. Furthermore, our 5G Campus Network
operates in TDD (Time Division Duplex) which means that the
slots are assigned to be uplink, downlink or again contain some
portion of uplink and downlink symbols. The slot assignment
in our 5G campus network iterates over the following slot



(a)

(b)

(c)

• Target send time, • Python sent, • Kernel sent, • Kernel received, • Python received

Fig. 6. PerfVis visualization of measurements over the 5G path (Fig. 4). (a)
is configured with a packet interval of 14ms, (b) with a packet interval of
15ms and (c) with a packet interval of 15ms and a changed 5G slot pattern.

• delays in measurement order, • delays sorted by value

Fig. 7. Forward delay for a TWAMP measurement over the 5G path (Fig. 4).
Structures like the vertical lines seen in Fig. 6a should show as horizontal
lines in this plot.

• Target send time, • Python sent, • Kernel sent, • Kernel received, • Python received

Fig. 8. PerfVis visualization of measurements over the 5G path (Fig. 4)
configured with a packet interval of 0.5ms and showing the length of a 5G
frame in the rows to highlight the 5G frame structure.

assignment ’DDDSU’, where ’D’ are downlink slots, ’U’ are
uplink slots and ’S’ are special slots that contain 10 downlink,
2 guard and 2 uplink symbols. This slot assignment leads to
5G frames containing this slot structure 4 times and results in
an uplink possibility every 2.5ms.

To better identify a periodicity of 2.5ms, the PerfVis evalu-
ation has been repeated with an interval of 15ms and the result
indeed shows that except for a few artefacts the timestamps
are closely lying on lines that are spaced by 2.5ms (Fig. 6b).
For verification of the hypothesis, the slot assignment has been
changed to ’DDDDDDDSUU’ which repeats two times in a
frame and thus uplink is possible every 5ms. The PerfVis
result in Fig. 6c shows nicely not only the 5ms periodicity but
also the two uplink slots following each other. This confirms
the hypothesis, that the structure in the PerfVis visualization
originates from the 5G time domain structure.

In this example of the 5G time domain structure, it can be
shown that the PerfVis measurement and visualization can be
tweaked to deliberately highlight specific structures (Fig. 8).
As we know from our 5G configuration that the slots are
0.5ms long, the PerfVis packet interval is chosen as 0.5ms
to identify the number of available uplink slots. This can
then be visualized with 20 intervals in a row, thus a row
contains the 5G frame length of 10ms. The result of that
configuration clearly shows a slot format with uplink slots
available every 2.5ms, where the reception of transmitted
packets accumulates.

B. 5G HARQ Retransmissions

On a different setup whose software gives out more details
about the 5G transmissions, we could verify that PerfVis
can visualize 5G HARQ (Hybrid Automatic Repeat Request)
retransmissions. The hardware setup can be seen in Fig. 9.
The Open Air Interface (OAI) software suite enables 5G
transmissions via the USRP B210 SDRs (Software-Defined
Radios) by a PC running the OAI 5G Core and a stand-
alone 5G gNB and a mini-PC running a 5G stand-alone
UE. The PerfVis measurement was configured with a packet
interval of 15ms and an increased packet size of 1500B
additional padding. Fig. 10 shows two lines on the left of



Fig. 9. Setup that uses software-defined radios (SDR) controlled by an open-
source 5G software running on the connected PCs.

Fig. 10. PerfVis visualization of a measurement with transmission from the
mini-PC via LAN to the PC and then via 5G back to the mini-PC. The
visualization only shows the kernel receive timestamps coloured with the
kernel delay, computed as the difference between the kernel send timestamps
and the kernel receive timestamps.

two subsequent downlink slots and outliers on the right which
are receptions after a HARQ retransmission. We know that as
92 out of 500 measurement packets had a delay higher than
8ms and the OAI software output reported 105 transmissions
that required exactly one HARQ retransmission until the end
of the PerfVis measurement. That the OAI software states
a few more HARQ retransmissions, can be explained by
the handshake and packets not stemming from PerfVis that
required retransmissions. This example shows that the PerfVis
visualization based on kernel software timestamps can indicate
the occurrence of retransmissions in lower protocol layers.
PerfVis is not bound to the specific setup, but the OAI software
provides the lower-layer logs with which we could verify that
the visualization indeed shows HARQ retransmissions.

V. DISCUSSION AND FUTURE WORK

The capabilities of PerfVis do not extend to identifying
sources or causes of timing effects on its own. The interpre-
tation of the visualization has to be done with all layers in
mind. An empirical series of tests in a structured way can
help to identify and verify the causes of timing effects. To
support this, taking timestamps from other layers than the
current application layer Python timestamps and the kernel
timestamps will be explored. If possible, PerfVis should take
these additional timestamps automatically, otherwise, ways of
obtaining and integrating them in the final visualization have
to be documented and implemented. If timestamp accuracy
becomes an issue, different ways of traffic generation can be
explored. Planned improvements for usability are adding a
GUI and providing more preconfigured plots and evaluations
for choosing a suitable visualization for the analysis task.
Furthermore, PerfVis is supposed to be used to investigate

the influence of 5G settings and different protocol stacks on
the application layer timing of packet transmission.

VI. CONCLUSION

Investigating network transmission timings is a complex
task that can, depending on the objective, require very different
approaches. PerfVis highlights that visualization is a crucial
part of a tool that makes measurement data more accessible.
By visualizing timestamps rather than only delays of packet
transmissions PerfVis can give detailed insights while still
being easy to use as an application. With the live mode and
extensibility to different protocol stacks and traffic patterns,
it can be used for latency analysis as well as network opti-
mization. The usage examples analysing 5G links show that
the tool helps to identify timing effects introduced by lower
layers in the protocol stack, even with timestamps from the
higher layers and that measurement and visualization can be
adapted to work out specific effect characteristics.

ACKNOWLEDGMENT

We thank our students Julius Herrmann for realizing the
tests on the Open Air Interface setup and Moritz Miodek for
plotting and analysing the Ping and TWAMP tests.

REFERENCES

[1] K. Hedayat, R. Krzanowski, A. Morton, K. Yum, and J. Babiarz, “A
Two-Way Active Measurement Protocol (TWAMP),” Internet Requests
for Comments, RFC Editor, RFC 5357, Oct. 2008. [Online]. Available:
www.rfc-editor.org/rfc/rfc5357.txt

[2] S. Shalunov, B. Teitelbaum, A. Karp, J. Boote, and M. Zekauskas, “A
One-way Active Measurement Protocol (OWAMP),” Internet Requests
for Comments, RFC Editor, RFC 4656, Sep. 2006. [Online]. Available:
www.rfc-editor.org/rfc/rfc4656.txt

[3] J. Fabini and M. Abmayer, “Delay measurement methodology revisited:
Time-slotted randomness cancellation,” IEEE Transactions on Instru-
mentation and Measurement, vol. 62, no. 10, Oct. 2013.

[4] A. Grigorjew, P. Diederich, T. Hoßfeld, and W. Kellerer, “Afford-
able measurement setups for networking device latency with sub-
microsecond accuracy,” Würzburg Workshop on Next-Generation Com-
munication Networks (WueWoWas’22), 2022.

[5] P. Orosz, T. Skopko, and J. Imrek, “A netfpga-based network monitoring
system with multi-layer timestamping: Rnetprobe,” in 2012 15th Interna-
tional Telecommunications Network Strategy and Planning Symposium
(NETWORKS). IEEE, Oct. 2012.

[6] S. Reif, A. Schmidt, T. Hönig, T. Herfet, and W. Schröder-Preikschat,
“X-LAP: A systems approach for cross-layer profiling and latency
analysis for cyber-physical networks,” ACM SIGBED Review, vol. 15,
no. 3, pp. 19–24, 2018.

[7] A. Protopsaltis, P. Sarigiannidis, D. Margounakis, and A. Lytos, “Data
visualization in internet of things: tools, methodologies, and challenges,”
in Proceedings of the 15th International Conference on Availability,
Reliability and Security, ser. ARES 2020. ACM, Aug. 2020.

[8] Z. Liu and J. Heer, “The effects of interactive latency on exploratory
visual analysis,” IEEE Transactions on Visualization and Computer
Graphics, vol. 20, no. 12, pp. 2122–2131, Dec. 2014.

[9] B. Gregg, “Visualizing system latency,” Communications of the ACM,
vol. 53, no. 7, pp. 48–54, Jul. 2010.

[10] S. Di Bartolomeo, A. Pandey, A. Leventidis, D. Saffo, U. H. Syeda,
E. Carstensdottir, M. Seif El-Nasr, M. A. Borkin, and C. Dunne, “Eval-
uating the effect of timeline shape on visualization task performance,”
in Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems, ser. CHI ’20. ACM, Apr. 2020.

[11] E. Dahlman, S. Parkvall, and J. Sköld, 5G NR. Elsevier, 2021.


