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Abstract—The distributed nature of cyber-physical systems
makes reliable communication essential. Hybrid Error Cod-
ing (HEC) allows the adaptation of transmission schemes to ap-
plication requirements (i.e., reliability and latency) and network
conditions. However, picking an efficient HEC configuration is
a computationally complex search task that must be repeated
when network conditions change. In this paper, we introduce
DeepHEC, a deep-learning-based approach for inferring coding
configurations. Results indicate that DeepHEC is on par with
search-based approaches in configuration efficiency, while signif-
icantly reducing inference time. In addition, DeepHEC decouples
solution space size and inference time, thereby achieving much
more predictable inference times that enable adaptive HEC
on real-time systems with strict timing requirements. This is
especially advantageous for cyber-physical systems that could not
previously benefit from adaptive HEC.

Index Terms—Cyber-Physical Systems, Error Control, Hybrid
Error Coding, Deep Neural Networks

I. INTRODUCTION

Nowadays, we see an increase in cyber-physical sys-
tems (CPS) being created for various use cases (e.g., indus-
trial manufacturing, autonomous logistics, or energy grids).
These CPS are often distributed, so reliable communication is
an essential pillar of dependable system operation. Reliable
communication is implemented by combining transmission
schemes (i.e., ARQ or FEC) with coding approaches based
on Reed Solomon [1] or Fountain Codes [2], [3]. Previous
research [4] indicates that an ideal solution in terms of theoret-
ical redundancy overhead is to use hybrid error coding (HEC).
On the physical layer, HEC is often implemented as Hybrid
ARQ (HARQ) [5], meaning that encoded parity packets are
sent on demand. However, we use the term HEC to allow
for pure FEC as well. HEC schemes have the drawback
that a suitable and efficient configuration cannot be obtained
from a closed-form expression but requires extensive search.
This configuration must be chosen considering a) application
requirements (e.g., maximum end-to-end latency or accept-
able packet loss rate), which are usually constant during a
system’s operation, and b) communication channel parameters
(e.g., packet loss rate or latency) that vary depending on the
environment. A mathematical framework to find the optimal

configuration is provided in [4]. Despite various optimizations
of the search algorithm, sometimes the search space is too
large for an efficient exploration, which makes adaptability
impossible when the inference time is larger than the channel
coherence time. This intractability is particularly challenging
on resource-constrained, embedded devices—the natural com-
ponents used to form CPS.

Machine learning has gained traction in nearly every field
in recent years, thanks to advances in both hardware and
available software frameworks. Machine learning algorithms
can learn arbitrary functions if the architecture of the algorithm
is powerful enough. When it comes to inference, deep learning
algorithms have the appealing property that the computation
latency is not dependent on the input values but only on
the neural network architecture, its implementation, and the
underlying hardware. This leads us to two research questions:
Can deep neural networks be used to learn the mapping
between network conditions and application requirements to
HEC configurations? Can the inference task be executed with
low delay and jitter, enabling its use in real-time systems that
deal with changing channel conditions?

The contribution of this paper is twofold:

• We introduce DeepHEC, a deep learning approach to
configure hybrid error coding systems.

• We evaluate the inference time required for both tradi-
tional search-based algorithms and our proposed deep
learning algorithm, showing that learning-based ap-
proaches enable real-time adaptive reliability due to their
predictably low inference time.

The remainder of the paper is structured as follows: In
Section II, we discuss related work. Section III introduces
the delay and loss rate models used to build a time-aware
HEC scheme. In Section IV, we describe how an optimal
HEC configuration can be obtained via an extensive search. A
comparable implementation using deep learning is described
in Section V. We evaluate both approaches in Section VI.
Section VII highlights directions for future work and Section
VIII concludes the paper.
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II. RELATED WORK

A. Hybrid Error Coding

Although ARQ is the dominant error correction in widely
deployed protocols (i.e., TCP or QUIC), HEC has been
efficiently used as well. Palmer et al. [6] use it to support
partial reliability in QUIC, improving video streaming quality.
Another application domain of HEC is multicast due to feed-
back implosion when ARQ is used with many receivers [7].
While our paper focuses on HEC with block codes, Huang et
al. [8] implement a similar scheme using random linear codes
(RLC) instead, thereby making the HEC delay independent
of the block length at the cost of higher redundancy. The low
delay of RLC codes is confirmed in [9], which studies different
approaches in the context of QUIC.

B. Deep Learning in Networked Communications

In recent years, we have seen an increased interest in apply-
ing deep learning to the field of networked communications.
[10] provides a recent overview of deep reinforcement learning
in network applications and includes a framework to formally
verify the properties of these algorithms. [11] is similar to
our work in that they use traffic parameters to infer higher-
level information—in their case QoS. [12] uses device-local
statistics to train a predictor for end-to-end service metrics—
enabling prediction-based decisions. Closest to our work is,
to the best of our knowledge, [13]. However, the authors
consider a joint source- and channel-coding, while we only
consider channel-coding using HEC. Furthermore, their goal
is to minimize error and redundancy information while we
strive to fulfill an application-specific error rate, while at the
same time minimizing the redundancy information.

III. BACKGROUND

Timely reliability must be based on precise delay and
packet loss rate models, so that the transport protocol can
be configured to meet the application’s delay and reliability
constraints. This section introduces the models that are later
used to optimally configure error control.

A. HEC Delay

HEC combines Automatic Repeat reQuest (ARQ) and For-
ward Error Coding (FEC). The ARQ delay is dominated by
the round-trip time (RTT ) required to detect a packet loss and
retransmit such a packet. This retransmission process can be
repeated NC times, where NC is the number of retransmission
cycles, until either the target loss rate is achieved or the target
delay expires. Under tight application delay constraints, a
proactive scheme such as FEC may be a better option instead.
The FEC delay is dominated by the source packet interval
(Ts) required to collect k packets before encoding, where k is
the block length. Consequently, the optimality of using either
FEC or ARQ depends on the relation between RTT and Ts.
Finally, a retransmission schedule (NP ) should be configured
that determines whether the p parity packets are proactively or
reactively transmitted. NP is a vector of length NC +1 where
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RTT
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Fig. 1: HARQ delay budget. It considers the round-trip time
(RTT ), inter-packet time (Ts), transmission delay (Dtx) and
block length (k).

the first position represents the FEC packets and the following
ones the consecutive ARQ retransmission cycles.

DHEC(k,NC , NP ) = DFEC(k,NP )+DARQ(NC , NP ) (1)

DFEC(k,NP ) =
RTT +DRS

2
+ k · Ts +NP [0] ·

PL

RC
(2)

DARQ(NC , NP ) =

NC∑
c=1

RTT+NP [c]·
PL

RC
+DRS+DPL (3)

The HEC delay is given in Eq. (1) and depicted in Fig-
ure 1. DRS is the response delay of the system and it
models operating system delays such as packet management
or scheduling latencies. Although a more precise adaptation
can be achieved by feeding dynamic response delays into
the algorithm [14], we have opted for a rather conservative,
constant value (DRS = 1ms) to reduce the dimensionality
of the input dataset (see Section V-A). The reactive scheme
incurs the packet loss detection delay (DPL), which depends
on the loss detection mechanism. We assume the mechanism
in [15] is implemented, which detects losses upon the arrival
of 3 consecutive out-of-order packets, and therefore DPL =
4.5 · Ts. Finally, PL and RC correspond to the packet length
and channel data rate, respectively. In the following we assume
PL = 1500 as this is the usual maximum MTU in IP networks.

B. HEC Packet Loss Rate

If HEC is deployed on highly dynamic systems that contin-
uously sense the channel and immediately adapt the protocol
configuration when changes are detected, the system is going
to operate below the channel coherence time. Given the fast
reaction to changes, the underlying channel can be modeled
as a binary erasure channel (BEC) in which packet losses are
i.i.d. (independent and identically distributed) and occur with
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probability pe. However, the framework here presented could
also be applied to channels with memory (i.e., Gilbert-Elliot
channels) [16] if required at the cost of less tractable results.

PLRHEC(k, p) =
1

k

k∑
i=1

i · Pr(Ik = i) (4)

Pr(Ik = i) =

p+i∑
e=max(p+1,i)

(
n

e

)
·pee ·(1−pe)n−e ·pd

(
e

i

)
(5)

pd

(
e

i

)
=

(
k
i

)(
n−k
e−i

)(
n
e

) (6)

The packet loss rate (PLRHEC) for a BEC is given in
Eq. (4), where Pr(Ik = i) is the probability of i unrecoverable
losses and pd

(
e
i

)
the probability that, given e erasures in a

block of n = k + p packets, i erasures lie within the data
packets. The number of parity packets is the 1-norm of the re-
pair schedule vector (p = ||NP ||1). Note that here we assume
that systematic codes are used, meaning that a verbatim copy
of the original data packets is always transmitted.

IV. OPTIMAL HEC CONFIGURATION

We say an HEC configuration (k,NC , NP ) is optimal if,
given a target delay DT and packet loss rate PLRT , it
produces the minimum amount of redundancy information (RI,
see Eq. (7)) from all possible configurations meeting both
constraints. Thanks to the feedback from the receiver, the
sender can stop retransmitting redundancy as soon as k packets
have been correctly received, thereby reducing the overall RI.
Such behavior is modeled with pf (c), which is the probability
of not receiving enough packets in cycle c.

RI(k,NC , NP ) =
1

k
NP [0] +

1

k

NC∑
c=1

pf (c− 1) ·NP [c] (7)

pf (c) = pf (c− 1)

n[c]∑
e=n[c]−k+1

(
n[c]

e

)
· pee · (1− pe)

n[c]−e (8)

n[c] = k +

c∑
b=0

NP [b] (9)

There is no closed-form expression to find the optimal
HEC configuration under delay and reliability constraints.
A solution to the optimization problem can be found using
Algorithm 1, which is an adaptation of previous algorithms [4],
[16] modified to execute fast enough for the generation of
large datasets (see Section V-A). The search begins with the
maximum number of retransmission cycles (see Eq. (10)) and
block length (see Eq. (11)). Nc,max is the maximum possible
number of cycles if pure ARQ is configured, whereas kmax

is the maximum block length when a single parity packet is
transmitted in NC retransmission cycles. For each NC and
k value pair, the number of parity packets is incremented

until the PLRT constrain is met and these are scheduled
to minimize the RI (lines 8 and 9 in Algorithm 1) until the
optimal configuration is found or a breaking point is reached.

Algorithm 1 HEC Configuration Search
Require: DT , PLRT

1: k∗ ← 0
2: N∗

C ← 0
3: N∗

P ← 0
4: ri∗ ←∞
5: b← 0
6: for NC = NC,max → 0 do
7: for k = kmax → 1 do
8: n← DERIV E N(k)
9: NP ← GEN SCHEDULE(k, n,NC)

10: ri← GET RI(k,NC , NP )
11: pr ← PLRHEC(k, n− k)
12: dr ← DHEC(k,NC , NP )
13: if ri < ri∗ ∧ pr ≤ PLRT ∧ dr ≤ DT then
14: k∗ ← k
15: N∗

C ← NC

16: N∗
P ← NP

17: ri∗ ← ri
18: b← 1
19: end if
20: end for
21: if b == 0 then
22: break
23: end if
24: b← 0
25: end for
26: return k∗, N∗

C , N
∗
P

NC,max =

⌊
DT −DFEC(1, [0, 1])

DARQ(1, [0, 1])

⌋
(10)

kmax =

⌊
DT − RTT+DRS

2 −NC ·DARQ(1, [0, 1])

Ts

⌋
(11)

The algorithm here presented can find the optimum config-
uration faster than a full search thanks to three assumptions:

1) The solution space is convex in NC [16]. If an update
of NC does not reduce the RI, the algorithm stops.

2) Due to the exponential decrease in the failure probability
of a cycle (see Eq. (8)), using more cycles reduces the
RI. Therefore, starting from the maximum number of
cycles NC,max, in combination with the early break due
to the first assumption, reduces the number of iterations.

3) Since the last retransmission cycle only occurs when
all the previous ones have failed, putting parity packets
at the back of the repair schedule helps reduce the RI,
except when the probability of the last cycle occurring
is high. Algorithm 2 efficiently checks if bringing parity
packets forward in the schedule reduces the RI.
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Algorithm 2 Generate Repair Schedule
1: function GEN SCHEDULE(k, n,NC)
2: p← n− k
3: if NC == 0 then
4: NP ← [p]
5: else
6: NP ← [0, ones(NC − 1), p− (NC − 1)]
7: end if
8: ri← GET RI(k,NC , NP )
9: for i = NC → 1 do

10: N
′

P ← NP

11: while N
′

P [i] > 1 do
12: N

′

P [i]← N
′

P [i]− 1
13: N

′

P [i− 1]← N
′

P [i− 1] + 1
14: ri

′ ← GET RI(k,NC , N
′

P )
15: if ri

′
< ri then

16: ri = ri
′

17: Np ← N
′

P

18: else
19: break
20: end if
21: end while
22: end for
23: return NP

24: end function

As shown in the Appendix, Algorithm 1 has two ma-
jor overheads, namely finding the optimal number of par-
ity packets (line 8) and the optimal repair schedule (line
9). The overall computational complexity of the algo-
rithm is O(N2

C,maxk
2
max · M(kmax, pmax, NC,max)), where

M(k, p,NC) = max(kp, p2, NCk,NCp). Such a large com-
putational complexity has two major implications: i) the in-
ference time may be larger than the channel coherence time,
and ii) the expected inference time is highly unpredictable
for different inputs. In the following we introduce DeepHEC,
a deep learning approach to HEC configuration search that
directly addresses these issues.

V. DEEPHEC

Based on our knowledge about the search for optimal coding
configurations, we have come up with a supervised deep
learning approach to infer configurations. DeepHEC uses a
neural network to infer k, n, and NC , and Algorithm 2 to find
the optimal repair schedule.

A. Dataset Generation

To use our supervised learning approach, it was necessary
to generate a dataset. We used the following input parameters:

• Application parameters: target erasure rate, target delay,
source packet interval, and packet length.

• Network parameters: channel data rate, channel erasure
rate, and round-trip time.

In order to obtain a representative dataset, we have con-
sidered network traces collected in the wild for the typical

Parameter Orders of Magnitude Unit Reference

PLRT 10−3, 10−4, 10−5 rate [21]
DT 100, 101, 102 ms [21], [22]
pe 10−2, 10−3 rate [19], [20]

RTT 100, 101 ms [19], [20]
RC 100, 101, 102, 103 Mbps [17]–[20]
Ts 10−1, 100, 101 ms [23]

TABLE I: Selected orders of magnitude for the generation of
the parameter dataset.

network deployments (i.e., broadband [17], 4G [18], 5G [19],
[20]), delay and reliability constraints for traditional appli-
cations [21] as well as more demanding applications still
under development [22], and a large set of different appli-
cation parameters [23] to support a wide range of real-time
applications. The resulting input dataset consists of 1.200.000
samples, generated as follows: for each parameter, an order
of magnitude from Table I is randomly selected with equal
probability. After that, a leading number between 1 and 9 is
selected randomly. Finally, Algorithm 1 is used to generate the
true output labels. The resulting dataset has been divided into
training/validation/test datasets with the proportion 60/20/20
and z normalization is applied before training.

B. Model Architecture

The implemented neural network uses classification for k
and p, and regression for NC . Using classification is possible
because, assuming a Vandermonde code in GF (28) is used,
k, p ∈ [0, 255]. NP is algorithmically found once k, p, and
NC are known (see Algorithm 2). The neural network takes
as input the vector i⃗ = [PLRT , DT , pe, RTT,RC , Ts] and it
outputs the vector: o⃗ = [k, p,NC ]. The main difference with
Algorithm 1 is the number of input parameters: PL and DRS

are constant values and therefore can be ignored. DPL can also
be omitted because it linearly depends on Ts. After the ablation
study in Section VI-B, we have selected the architecture with
the best accuracy (see Figure 2), consisting of 6 input neurons,
5 fully connected hidden layers with 250 neurons each and the
leaky ReLU activation function, and three output layers: two
with 255 outputs to perform classification for k and p, and
one with a single output for NC .

VI. EVALUATION

This section evaluates the proposed training methodology
for DeepHEC, including an ablation study and analysis of
the different hyperparameters involved. Once a performant
architecture is found, we compare its performance with Fast
Search in terms of inference time and RI distribution.

A. Model Training

The models have been trained using a loss function com-
posed of the sparse categorical cross-entropy for the clas-
sification and the mean squared error for regression. The
approach in [24] has been used to find a suitable learning
rate (see Figure 3a). The loss significantly drops between
10−3 and 10−4, after which it slightly increases until 10−5.
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# layers # neurons Activation Weight Initializer # parameters Accuracy
k NC p

4 200 ReLU He Uniform 225,113 93,72% 97,56% 99,21%
4 250 ReLU He Uniform 318,763 98,42% 98,08% 99,79%
5 200 ReLU He Uniform 265,313 98,09% 98,32% 99,77%
5 250 ReLU He Uniform 381,513 99,64% 98,81% 99,96%
6 200 ReLU He Uniform 305,513 99,22% 98,75% 99,92%
4 250 Leaky ReLU (α = 0.01) He Uniform 318,763 98,19% 97,97% 99,76%
5 200 Leaky ReLU (α = 0.01) He Uniform 265,313 97,82% 98,01% 99,73%
5 250 Leaky ReLU (α = 0.01) He Uniform 381,513 99,75% 98,82% 99,94%
6 200 Leaky ReLU (α = 0.01) He Uniform 305,513 99,34% 98,82% 99,93%
5 250 Leaky ReLU (α = 0.2) He Uniform 381,513 97,63% 98,23% 99,58%
6 200 Leaky ReLU (α = 0.2) He Uniform 305,513 97,01% 98,49% 99,55%
5 250 ELU (α = 0.5) He Uniform 318,763 96,26% 98,10% 99,40%
5 250 ELU (α = 1.0) He Uniform 318,763 89,27% 97,51% 98,25%
5 250 SELU LeCun Normal 318,763 96,84% 98,12% 99,62%
6 200 SELU LeCun Normal 305,513 96,62% 98,15% 99,56%

TABLE II: Neural Network hyperparameter study.

1 6

1 25
0

1 25
0

1 25
0

1 25
0

1 25
0

1 25
5

k

1 25
5

p

1 1

NC

Fig. 2: DeepHEC architecture: input layer with 6 inputs, 5
fully-connected layers and three output layers with 255 outputs
for k and p, and a single output for NC .

Therefore, the selected maximum and minimum learning rates
are 10−3 and 10−4, respectively. These results are confirmed
in Figure 3b. Fix learning rate policies either quickly converge
to suboptimal solutions (10−3) or require too many epochs1

to achieve low loss (10−4). In order to achieve a good trade-
off between quick solution space exploration and fine-grained
optimum approximation, we set the initial learning rate at 10−3

and reduce it once the loss has converged. Two versions of
this approach are proposed: i) Step-wise 10−4, which switches
to 10−4 on epoch 600, and ii) Step-wise 10−5, which first
switches to 10−4 in epoch 400 to later switch to 10−5 in
epoch 800. As expected, further reducing the learning rate
below 10−4 does not produce lower loss and therefore the
former approach has been selected to train all the models.

B. Hyperparameter Analysis

Table II presents the different architectures that have been
tested, which were trained for 1,000 epochs with a batch size

1An epoch is one complete pass through the training dataset.

10−5 10−4 10−3

Learning Rate
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L
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(a)
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Step-wise 10−5

LR = 10−3

LR = 10−4

(b)

Fig. 3: Learning rate evolution for a model with 5 layers with
250 neurons each and ReLU (α = 0.001) activation function.

of 300. Only nonsaturating activation functions (i.e., ReLU,
leaky ReLU, ELU, and SELU) have been considered to prevent
vanishing and exploding gradients [25]. In order to mitigate
unstable gradient problems, we used the He Uniform weight
initializer for ReLU, leaky ReLU, and ELU, whereas the
LeCun Normal initialization has been used for SELU, as rec-
ommended in [25]. Table III shows that there is little difference
between L1 and L2 regularization. Hence, L2 regularization
with a factor of 0.0001 has been selected as it finds the most
valid configurations. The best performance overall is achieved
with leaky ReLU (α = 0.01) with 5 layers and 250 neurons
per layer. In the following, we only consider this model, as
well as leaky ReLU (α = 0.01) with 200 neurons and 6 layers
in order to analyze the performance of smaller models with
slightly worse accuracy.

C. Model Performance

Now that we know that our DeepHEC approach accu-
rately predicts the results of the extensive search, the ques-
tion remains how they compare in terms of resource ef-
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Reg. Reg. Factor Accuracy Valid Configs
k NC p

L1 0.001 99,44% 98,79% 99,81% 99,20%
L1 0.0001 99,77% 98,97% 99,96% 99,59%
L1 0.00001 99,65% 98,98% 99,98% 99,54%
L2 0.001 99,27% 98,89% 99,72% 99,39%
L2 0.0001 99,75% 98,82% 99,94% 99,59%
L2 0.00001 99,72% 98,85% 99,97% 99,52%

TABLE III: Performance impact of regularization for model
with leaky ReLU (α = 0.01), 5 layers and 250 neurons.

ficiency. When it comes to algorithmic complexity, Deep-
HEC has O(1) as the number of operations of a neu-
ral network is independent of the input. In contrast, Fast
Search has O(N2

Ck
2
max · M(kmax, pmax, NC,max)), where

M(k, p,NC) = max(kp, p2, NCk,NCp) (see Appendix), as
the number of HEC configurations to check for optimality
depends on the maximum block length (kmax) and number
of repair cycles (NC,max) that meet the delay constraint, as
well as the necessary parity packets to ensure a loss rate
below the target loss rate. Following the definition of the
O-notation, DeepHEC is better—but as we are interested in
performance on real-time systems, we instead care about small
problem sizes and not asymptotical behavior. Therefore, we
execute performance evaluations concerning inference time
and redundancy information to evaluate practical performance.
We do so on a desktop PC running Ubuntu 18.04 LTS on an
Intel Core i7-7700 CPU at 3.6 GHz and 16GB RAM. For the
search-based approach, we evaluate the algorithm proposed in
Section IV (Fast Search). This algorithm is implemented in
Rust2 and compiled using cargo build --release to
make sure the resulting code is optimized. The approach is
allocation-free and only uses the Rust core and not the std
library. Hence, the code can be compiled to systems without
support for either of these—making it possible to run the
search efficiently on embedded devices.

To compare the search-based with the learning-based ap-
proach, we have profiled both algorithms on our test dataset
(cf. Section V-A) with respect to inference time and redun-
dancy information. Figures 4a and 4b depict, respectively,
the cumulative distribution function (CDF) and probability
density function (PDF) of inference times for the different
search algorithms. At first sight, it becomes evident that
the learning-based models achieve a much more predictable
inference time. When the solution space is small enough, Fast
Search outperforms DeepHEC (approximately in 45% of the
sample configurations). However, it also has a much longer
tail, taking up to 4 orders of magnitude longer than the slowest
DeepHEC inference. In nearly 20% of the cases, Fast Search
achieves a delay beyond 100ms. Such a slow reaction makes
adaptation impossible in fast-changing channels since the new
configurations are not produced in an acceptable time. On the
other hand, DeepHEC presents a much shorter tail beyond the
80th percentile, which is a result of the time spent looking for

2https://git.nt.uni-saarland.de/open-access/edcc2022/code
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Fig. 4: Inference Time Cumulative Distribution Function
(CDF) and Probability Density Function (PDF).
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Fig. 5: Redundancy Information error Cumulative Distribution
Function (CDF).

NP . For comparison, we have included the neural network
inference time that excludes the search for NP (NN results in
the figure). The worst DeepHEC inference time is in the order
of single-digit milliseconds, thereby enabling quick reactions
to channel changes thanks to the decoupling between solution
space size and inference time.

Figure 5 shows the CDF for the RI error, i.e., how much
the RI of a model deviates from the optimal RI found by
Fast Search. Both models are able to find valid configurations
in 99.3% of the cases so the slightly better accuracy of the
larger model with 5 layers and 250 neurons does not result in a
significant RI improvement, although its RI error has a shorter
tail. However, further reductions in the model size come at
the cost of a drop in the number of valid configurations (see
Table IV) and thus other mechanisms to reduce the model size
without a negative impact on the accuracy should be explored
in the future, which are discussed in Section VII.

Finally, we executed a microbenchmark on a "denoised"
Raspberry Pi 4 system (minimal Raspian OS running only
SSH and our evaluation code) to support our claim about
algorithmic complexity. We picked several inputs so that
their inference times span several orders of magnitude and
measured cycles using Linux perf tools. The result is that for
DeepHEC, all cycle counts are in the same order of magnitude
(around 2.5 × 106), while for Fast Search they span several
orders of magnitude (106 to beyond 109).
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Model Accuracy Valid Configurations
k NC p

Leaky 5 200 97,82% 98,01% 99,73% 99,01%
Leaky 5 250 99,75% 98,82% 99,94% 99,34%
Leaky 6 200 99,34% 98,82% 99,93% 99,35%

TABLE IV: Percentage of valid configurations for different
architectures.

VII. FUTURE WORK

Although DeepHEC heavily reduces the inference time, the
results presented in this paper show that Fast Search can
outperform DeepHEC in roughly 45% of the cases. Therefore,
it is still an open research question whether these algorithms
can be deployed on embedded devices (either via hardware
acceleration or more efficient neural network architectures)
or dedicated, algorithmic-based solutions will still dominate
embedded deployments. In future work, we intend to look into
more efficient architectures towards embedded DeepHEC. We
believe most of the model complexity comes from the fact that
the output parameters are quantized, so that slight changes in
the input may produce large output changes, resulting in dis-
continuities that require larger neural networks to be learned.
Therefore, we plan to relax the RI-optimality constraint to
reduce the model size further and, at the same time, define an
RI-based loss to nudge the solution towards (suboptimal) valid
configurations that do not produce a large RI increase. Finally,
for DeepHEC to be deployable on embedded devices with
limited memory and computational power, model quantization,
and pruning are interesting alternatives to explore in order to
heavily reduce the model size and inference time.

VIII. CONCLUSION

This paper introduces DeepHEC, a deep-learning-based
approach to finding optimal configurations for HEC schemes.
We have evaluated its efficiency (in terms of redundancy
information) as well as latency (in terms of absolute inference
time as well as inference time predictability)—showing that
DeepHEC can compete with existing search-based algorithms
and can decrease inference times significantly. Thanks to its
more predictable inference time, DeepHEC can bring hybrid
error coding to cyber-physical systems that require a real-time
operation in order to meet the application requirements, so that
these systems can benefit from adapting their coding scheme—
a task that was previously impossible to complete.
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APPENDIX

Lemma A.1: The binomial coefficient
(
n
k

)
, when imple-

mented with dynamic programming, requires k operations.
The lemma above directly follows from the fact that any

bonimial coefficient fulfills
(
n
k

)
=

(
n

n−k

)
and can be calculated

as follows (
n

k

)
=

k∏
i=1

n− i+ 1

i

Lemma A.2: Given the block length k and number of parity
packets p, the complexity of PLRHEC(k, p) (Eq. (4)) is
CPLR(k, p) = O(max(k3, kp2)).

If exponentiation by squaring is used, the power of a number
xn has complexity O(log2(n)). As a result, the complexity of
Eq. (4) can be obtained as follows

k︸︷︷︸
outer sum

·max(p, i)︸ ︷︷ ︸
inner sum

(O(log2(e · (n− e)))︸ ︷︷ ︸
powers

+O(i) +O(e− i)︸ ︷︷ ︸
binomial coefficients

)

Since i ≤ k and e ≤ p + i, the computational complexity
of Eq. (4) is

CPLR(k, p) = O(max(k3, kp2)) (12)

Lemma A.3: Given an HEC scheme with block length k,
number of parity packets p and number repair cycles NC , the
computational complexity of calculating the RI (Eq. (7)) is
CRI(k, p,NC) = O(max(N2

Ck
2, N2

Ckp)).
Assume the result of evaluating Eq. (9) ∀ c ∈ [1, NC ] is

stored in a vector to avoid evaluating the same expression
several times. As a result, the complexity of Eq. (8) can be
obtained as follows

c︸︷︷︸
recursivity

· k︸︷︷︸
sum

·( O(e)︸︷︷︸
binomial

coefficient

+O(log2(e · (n[c]− e)))︸ ︷︷ ︸
powers

+O(1)︸ ︷︷ ︸
Eq. (9)

)

Since c ≤ NC , e ≤ n[c] and n[c] ≤ k+p, the complexity ex-
pression above results in O(max(NCk

2, NCkp)). Therefore,
the complexity of Eq. (7) is

CRI(k, p,NC) = O(max(N2
Ck

2, N2
Ckp)) (13)

Lemma A.4: Given NC,max the maximum number of re-
transmission cycles (Eq. (10)), kmax the maximum block
length (Eq. (11)), and pmax the optimal number of par-
ity packets for the block length kmax, the computational
complexity of finding the optimal codeword length n is
O(NC,maxk

2
maxpmax ·max(k2max, p

2
max)).

The codeword length n is looked for in line 8 of Al-
gorithm 1, which increases p starting from p = 0 un-
til popt(k) is found for each k ∈ [1, kmax], such that
PLRHEC(k, popt(k)) ≤ PLRT . The optimal number of
parity packets is a monotonically increasing function since,
for increasing k and constant p, the redundancy information
decreases ( p

k+1 < p
k ), and therefore PLRHEC(k + 1, p) ≥

PLRHEC(k, p). As a result, the optimal number of parity
packets fulfills that popt(k) ≤ pmax ∀ k ∈ [1, kmax] where
pmax = popt(kmax).

NC,max︸ ︷︷ ︸
Line 6

Algorithm 1

· kmax︸ ︷︷ ︸
Line 7

Algorithm 1

· pmax︸ ︷︷ ︸
Increase p

until popt(k)

· O(max(k3max, kmaxp
2
max))︸ ︷︷ ︸

PLRHEC(k,p)≤PLRT check

Lemma A.5: Given NC,max the maximum number of re-
transmission cycles (Eq. (10)), kmax the maximum block
length (Eq. (11)), and pmax the optimal number of par-
ity packets for the block length kmax, the computa-
tional complexity of finding the optimal repair sched-
ule is O(N2

C,maxk
2
max · M(kmax, pmax, NC,max)), where

M(k, p,NC) = max(kp, p2, NCk,NCp).
Every time a parity packet is brought forward in the repair

schedule (see lines 12 to 20 in Algorithm 2), only the failure
probability of the two modified cycles changes (see Eq. (8)).
For an efficient implementation of Algorithm 2, our imple-
mentation maintains an array of length NC whose entries are
the failure probability of each cycle, pf (c)∀ c ∈ [1, NC ], such
that only the modified failure probabilities are recalculated,
thereby achieving the following complexity:

CRI(k, p,NC)︸ ︷︷ ︸
Line 8 Algorithm 2

+ NC︸︷︷︸
Line 9

Algorithm 2

· p︸︷︷︸
At max. p

packets
forward

· O(max(k2, kp))︸ ︷︷ ︸
Recalculate RI

Note that all operations with complexity O(1) are not
included, as the RI and schedule change clearly dominate.
Bear in mind that, for the recalculation of the RI, only the
summation in Eq. (8) needs to be calculated for two different
cycles, resulting in the complexity O(k2, kp). Eq. (14) shows
the final complexity of Algorithm 2.

CGen Np
(k, p,NC) = O(NCk ·M(k, p,NC)) (14)

M(k, p,NC) = max(kp, p2, NCk,NCp)

Since NC ≤ NC,max, k ≤ kmax and p ≤ pmax, and
accounting for the iterations over NC,max and kmax in Al-
gorithm 1, then Lemma A.5 is proven.

Lemma A.6: Given NC,max the maximum number
of retransmission cycles (Eq. (10)), kmax the maxi-
mum block length (Eq. (11)), and pmax the optimal
number of parity packets for the block length kmax,
the computational complexity of Fast Search (Algo-
rithm 1) is O(N2

C,maxk
2
max ·M(kmax, pmax, NC,max)), where

M(k, p,NC) = max(kp, p2, NCk,NCp).
This lemma directly follows from Lemma A.4 and

Lemma A.5. In practice, at least one of the parameters (kmax,
pmax and NC,max) may dominate the others, depending on
the relation between channel parameters and application con-
straints. In order to better analyze those cases, the complexity
of finding the optimal codeword length should be considered.
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