
Network Supported Congestion Avoidance
in Software-Defined Networks

Jochen Gruen, Student Member, IEEE, Michael Karl, Student Member, IEEE,
and Thorsten Herfet, Senior Member, IEEE

Telecommunications Lab

Saarland University, D-66111 Saarbruecken, Germany

Email: {gruen,karl,herfet}@nt.uni-saarland.de

Abstract—Large IP networks tend to have a highly hetero-
geneous structure with many different transmission segments,
each endowed with individual characteristics like data rate or
delay. Obviously, applications find it difficult to precisely adjust
their sending behavior to the underlying topology. Basically, a
higher network utilization without congestion is desirable. Server
applications demand for reliable information about the available
data rate in the network in order to provide a sufficient quality to
the clients. Traditionally, this information is completely gathered
by source and sink without interaction with the network infras-
tructure. The rise of software-defined networks (SDNs) enables
the integration of the network into this process. In this paper we
propose a rate control mechanism for software-defined networks
to avoid congestion situations. The approach enables clients
to communicate with the network to bidirectionally exchange
information about available and occupied data rate. We found
that this customized communication approach enables better
network load distribution and application transmission reaction
- which can be easily implemented with SDNs. Ultimately, the
controller finds an efficient forwarding path in the network and
the clients have a reliable upper bound for their sending data
rate.

Keywords: Congestion Avoidance, Rate Control, Software-
Defined Networking

I. INTRODUCTION

According to the Cisco Visual Networking Index (VNI)

[1], in 2016 video content with a duration of 1.2 million

minutes will cross the global IP networks every second. Many

contemporary transmission streams in the Internet are highly

inflexible regarding their data rate consumption, which partic-

ularly holds for multimedia streams. These streams demand

for a reliable lower data rate bound and increase their sending

rate up to a specific value. For example consider H.264[2]

encoded video streams or the dynamic adaptive streaming via

HTTP (DASH)[3] approach. Current networks have extremely

complex and imposing structures. Handling and management

of these supremely heterogeneous networks are challenging

topics since the performance and reliability is subject to mul-

tiple factors such as technical characteristics and policy-driven

requirements. Traffic Engineering [5] deals with the challenges

of evaluating and optimizing the performance of IP networks.

Thereby, proactive and responsive approaches are used. The

challenge is to cope with different types of traffic. Some

have an intrinsic data rate requirement whereas others are

completely flexible. Despite this traffic properties all streams

must be carried by the network in an effective and efficient way

in order to provide reliable and operational communication.

The advent of software-defined networks implicates a set of

new features for both, the development of new networking ap-

proaches and improvement of current networking mechanisms.

As an example Google uses this new networking technology

for their inter-datacenter WAN [4]. The concepts of SDNs

are also principally applicable to traditional IP networks: the

circuit switching character of matching flows with subsequent

forwarding according to predefined rules is already known

by Multi-Label Protocol Switching [6]. Obviously, new ideas

as information modifications of the lower OSI layers of

packets are not available in traditional IP based networks.

Despite the many-faceted development, current networking

approaches do not provide any mechanism to communicate

with applications targeting the goal to precisely adjust the

transmission requirements of both, the network and the end-

to-end applications. In this paper we propose a communication

protocol based on UDP packets which enables the client and

network to exchange information about requested, available,

and occupied data rate. This information exchange enables all

participating parties to communicate information about stream

data rates which leads to two different things: On the one

hand, the network is able to perform an improved forwarding

decision based on the requested and used data rates. On the

other hand, the client is not obliged to do congestion control

as congestion is avoided beforehand by the announcements of

the available data rates through the controller of the SDN. Of

course, the client is required to adapt the output data rate to

the controller’s suggestion. We call this type of rate control

network supported congestion avoidance (NSCA). This paper

is structured as follows: Section II discusses basic concepts

of SDNs. Section III introduces the main idea behind rate

controlling and section IV presents the NSCA approach.

Section V gives an optimzation approach for network stream

distribution. Section VI describes an application scenario for

the proposed NSCA mechanism and section VII concludes this

paper.

II. SOFTWARE-DEFINED NETWORKING

Software-defined networking describes a recent approach

for networking that is also discussed in ITU-T SG 13. It is

basically a new approach to control networks with a separate

978-1-4799-2084-6/13/$31.00 ©2013 IEEE ICON 2013

controlling entity. The OpenFlow specification represents the

probably most popular specification for the communication

between controller and nodes in software-defined networks.

In fact it defines a standardized communication and modi-

fication connection between controlling intelligence and the

switching hardware. Basically, the architecture consists of

two separated parts: controller and forwarding entities. Thus,

the switching logic moves completely out of the forwarding

hardware providing an easy, centralized network configuration.

The key strategy with OpenFlow is to match packets according

to their transmission signature, called flow, and provide an

individual way of forwarding through the network. A flow

consists of data-link, network and transport layer characteris-

tics, e.g. MAC/IP-addresses and communication ports. It is

also possible to wildcard some flow fields to create more

generic matches. When the flow is used to match a stream,

it can be combined with a special action. For example, such

an action can be a simple port forwarding command or a

more complex MAC and IP field modification. This flexible

handling of packets constitutes a clear advantage compared

to the traditional static networking architecture where no

differentiation between packets according to their transmission

signature is made. This in turn enables flexible interactions

with individually selected traffic. The SDN approach works as

follows: A packet of a transmission reaches an edge OpenFlow

node. In case the node has no information how to handle

the packets, the default action is to send this packet via the

OpenFlow protocol from this node to the controller. Then, the

controller extracts all information from the packet and thus

obtains its flow information. Obviously, all packets belonging

to the same transmission have the same flow information.

According to this information, the controller decides how

to handle these packets. Therefore, it associates this flow
with a flow signature and a set of special actions per node.

The signature and the necessary actions are then stored at

each network node that is required to forward this flow. The

following packets of the transmission thus match the flow
signature at the node. In this way, they can be associated with

a set of actions at the nodes, e.g. port forwarding, which can

be directly executed in the network without the packet being

sent to the controller again. These entries can also be forced to

timeout after a predefined time period. Eventually, software-

defined networking provides a practical approach to overcome

the limitations of current networks that were designed for tra-

ditional client-server communication. Furthermore, it prepares

the way for the future media Internet with its high data rate and

high quality applications. Innovations regarding new transport

protocols and transportation systems are drastically eased.

III. RATE CONTROL

Currently, there is a set of already deployed rate control

mechanisms which mostly are targeted at congestion control

and avoidance. Predominant approaches are different forms of

the TCP congestion avoidance algorithm, e.g. TCP New Reno

[7], TCP CUBIC [8] or Compound TCP [9], and the TCP

friendly rate control (TFRC) [10] mechanism. All of them

use the perceived losses, round trip time and segment size to

determine a sending rate that is fair towards connections that

use a compatible scheme. Additionally, there are congestion

avoidance mechanisms that include network support and signal

the sender of a connection through explicit feedback, e.g.

explicit congestion notification (ECN) [11]. Still, most con-

gestion control mechanisms are fed through explicit network

characteristics like delay and loss or artificial loss introduced

through schemes like random early detection (RED) [12] in

case of heavy load. All rate control mechanisms have in

common that they need regular feedback from the receiver to

calculate the network characteristics and by that their fair share

of the available data rate. Media streaming applications tend

to require a rather constant data rate to provide an acceptable

quality to the end user. More flexible applications are able

to send the video in different qualities and apply variable

bitrate coding mechanisms as H.264 but their requirement for

certain data rate limits remain in between the change of coding

parameters. Additionally, frequent changes of coding schemes

can disturb the user and impair the experience quality of the

application. Therefore, the TFRC algorithm is one of the more

suited algorithms for congestion control of media streams as it

provides a higher data rate stability. In contrast, the common

TCP congestion control algorithms are more unstable in terms

of allowed data rate. With the rise of SDNs new possibilities

for rate control emerge which are based on the fact that

a central controller instance has complete knowledge about

the network. With this global view it can assign shares of

the available data rate to all flows traversing a specific link.

In particular, this is highly interesting for media streaming

applications as they need information about the available data

rate to prepare a data stream that fits into the given limits. A

central controller can provide this information in advance and

thus, proactively inform the application to adapt its parameters.

We call this type of rate control network supported congestion
avoidance (NSCA).

IV. NSCA SIGNALING

Applying NSCA implies that network and client communi-

cate. We propose a communication protocol based on UDP

packets which enables the client and network to exchange

information about 1) requested, 2) available, and 3) occu-

pied data rate. This communication enables both parties to

communicate information about stream data rates and by that

allows two things. On the one hand, the network is able to

perform an improved forwarding based on the requested and

used data rates. On the other hand, the client is not obliged

to do congestion control as congestion is avoided through the

announcements of the available data rates through the network

controller. Of course, the client is required to adapt the output

data rate to the network controllers suggestion. Obviously, a

traditional method should be provided as a backup procedure.

A. NSCA Signaling Protocol

Figure 1 shows the signaling protocol. The sender com-

municates with the controller by sending UDP packets to

Sender OF Controller
subscribe

subscribe

avail

avail

seize

seize
timeout

registration
timeout

sub-
scription
timeout

subscription
deleted

dr_min (bps)

type protocol

dr_max (bps)

0 32subscribe

dr_avail (bps)

type
0 32avail

dr_seized (bps)

type
0 32seize

avail
timeout

fallback on
other rate
control

src_port

dst_ip

src_ip

dst_port

reserved

upkeep
timeout

avail

Fig. 1. The signaling between sending client and network controller. The
client keeps up a subscription with the controller. The controller announces
available data rates and the client responses with the actually seized data rate.

a network specific service address IPs : Ports defined by

the controller. If present, the controller answers directly to

any client requests by responding with a proper UDP reply

packet. The sending client must initiate the communication by

requesting a subscription for the available data rate from the

network. Such a subscription means that the controller sends

regular updates about the available data rate to the subscriber.

To establish a subscription, the client sends a subscribe request

which contains information about the minimum and maximum

data rates drmin, drmax, and the flow signature of the datas-

tream that is sent. This subscription request is confirmed by the

network controller through regular announcements of the data

rate that is available for this specific sender dravail. Finally,

the sender must inform the controller about the maximum data

rate that will be consumed by the output datastream drseized.

There are several timeouts involved to manage the upkeep

of subscriptions and to make the communication reliable. A

subscription timeout tosub is managed by the controller for

each subscription. All messages that arrive from the subscriber,

that is subscribe and seize messages, refresh the corresponding

subscription timeout. Once a subscription timeout elapses, the

associated subscription is regarded to be no longer active and

is deleted by the controller. To make the exchange of updates

reliable the controller uses a seize timeout toseize. Every time

an avail message is sent to the client the corresponding seize

timeout is started. Once this timeout is triggered, the avail
message is sent again. Also once the seize message is received

an upkeep timeout toupkeep is started after which the avail-
seize cycle is repeated. Similarly to the controller, the sending

client needs to manage some timeouts too. The first one is the

registration timeout toreg which is started after a subscribe
message is sent to the controller. Once the registration timeout

expires, the subscribe message is resent. After a subscription

is established the sender starts the avail timeout toavail after

each received avail message. If no avail message is received

until the timeout expires, the controller is assumed to be

unresponsive and a fallback to traditional congestion control

mechanisms must be performed. Clearly, the client should

continuously try to reach the controller in case it becomes

responsive again.

B. Client Workflow

Figure 3 shows a flow chart with the behavior of the sending

client. It is divided into two main parts: the data sending loop

on the left and the event handling loop on the right. After start-

up a subscribe is sent to initiate the communication with the

network controller. This is followed by setting nsca to false
and entering the data loop to send data with a traditional rate

control mechanism to avoid unnecessary delay at transmission

start up. Basically, the data loop describes that the client sends

data with the current rate control, either network controlled or

an end-to-end rate control, until the transmission is stopped or

an event has been triggered. On the other hand, the event loop

describes the actions in case of arrival of an avail packet,

or a timeout for either an avail packet from registration or

the regular updates by the controller. If an avail packet is

received, drseized is determined, then the NSCA is activated

by setting nsca to true and the data loop is reentered if no

further event must be processed. Note that all avail packets

by the controller will reset drseized. If one of the timeouts

elapses, a new subscription is sent and the client continues to

use a different rate control mechanism to send data. Notice,

that drseized is set to zero if dravail < drmin. This describes

the case that not enough resources are available to transmit a

data stream whose flexibility is limited. Once the transmission

is over, the subscription will automatically time out at the

controller.

C. Controller Workflow

A similar flow chart for the controller is presented in

figure 2. The controller holds a cache of currently active

subscriptions for which it needs to create flows through the

network and determine the maximum possible data rates. The

setup is done on a regular basis and triggered by an event

which is scheduled after the controller starts. In the beginning,

the only event that can happen is either the setup event or the

arrival of a packet. When a subscribe packet arrives, a new

subscription is created or an existing subscription is updated

and the timeout for this subscription is set. In case of a

seize packet in addition the timeout toseize is deleted if the

subscription is still valid. The setup workflow is executed on a

regular basis for all setup events that are triggered. It consists

of determining the available data rate for each flow, allocating

the flows through the network, and sending the avail packets

to the clients which have a valid subscription. A detailed

description of the setup procedure can be found in section

V. When and how often the setup occurs can vary depending

on e.g. the performance of the available controller hardware.

The remaining events are the timeouts for either subscriptions

or expected seize packets which lead to the deletion of the

avail
timeout?

received
avail?

dr_avail <
dr_min?

dr_seized = 0 dr_seized =
min(dr_avail,dr_max)

send data
with

dr_seized

NoYes

NoYes

No

End Yes

get
stop

transmission

is
stopped?

Yes No

registration
timeout?

NoYes

send data
with other

rate control

has
event?

nsca = true nsca = false

nsca?

No Yes

Yes

No

Start

set
avail

timeout

set
registration

timeout

delete
avail

timeout

delete
registration

timeout

send
seized

send
subscribe

Fig. 3. A flow chart representing the behavior of the sending client. In case no compatible network controller is available the sender will fall back on
traditional rate control.

setup
event?

schedule
setup
event

Start

subscription
timeout?

wait
for

event

No

Yes

Yes

delete
subscription

setup

received
packet?

is
subscribe?

Yes

No

is
seize?

Yesupdate
subscription

Yes

set
subscription

timeout

seize/
upkeep

timeout?
No

send
avail

Yes
set

seize/upkeep
timeout

send
avails

set
seize/upkeep

timeouts

No
delete
seize

timeout

No

subscription
valid?

Yes
No

No

set
upkeep
timeout

Fig. 2. A flow chart representing the behavior of the network controller.

corresponding subscription or a repetition of the corresponding

avail packet, respectively.

V. NETWORK RATE CONTROL SERVICE

The Network Rate Control Service (NRCS) calculates the

network-wide optimum stream distribution. Here, we assume

that all streams in the network are NRCS based, that is, they

always limit their rate according to the network recommenda-

tion. Another assumption is that the maximum link capacities

of all links in the network are known to the controller.

The NRCS described here is part of the controller workflow

illustrated in Figure 2 and denoted as setup. First of all, we

introduce some basic definitions that ease the handling of the

problem. Afterwards we present the optimization problem and

formulate a possible solution. For this scenario, we assume

the presence of n streams where all streams si are in the set

S = {s1, . . . , sn}. Each stream s ∈ S has already announced

(via the subscribe message) its minimum and maximum data

rate requirements which can be represented as the interval

I(si) = [drmin(si), drmax(si)]. The following actions are

performed for all streams si ∈ S: For a better optimization

solution, we introduce an interval tuning factor k that splits

I(si) into multiple equally sized portions with the step-size:

ΔI(si) =
drmax(si)− drmin(si)

k

Thus, we obtain a set of data rates for stream si:

DRk(si) = {drmin(si), drmin(si) + ΔI(si),

. . . , drmin(si) + k ·ΔI(si)}
= {dr0(si), dr1(si), . . . , drk(si)}

Note that k influences the performance, granularity and com-

plexity of the calculations. Obviously, larger values for k lead

to a higher number of possible data rates whereas a smaller

value of k leads to a coarser optimization result. k can also

depend on additional factors as the transport protocol (UDP,

TCP). Then, for each drj(si) ∈ DRk(si) the set of network

paths between source and target is determined. But before

applying a modified (no visited flag and no exit if node was

found the first time) breadth-first search (BFS) that finds all

paths between the source a and the desired target node b
the network is pruned. That is, all links l are ignored in the

BFS that satisfy the condition cap(l) < drj(si). Therefore,

only links with valid capacity values are included in the BFS

result and the computational complexity decreases. The run-

time complexity of a BFS is generally O(|Nodes|+ |Links|).
Besides this, the computational complexity of our approach

increases with the number of streams in the network. In this

paper we only focus on basic, non-optimized solution that

leaves room for further improvements. Afterwards, the BFS

provides a set of paths for stream si for each data rate drj(si):
P (si, drj(si)) = {p1(si), p2(si), . . .}. The set of paths varies

for each data rate because paths with a lower bottleneck

capacity are only available for the stream if the data rate

is small enough. The last step is to build the stream-setup

tuple set Γ(si) for the stream si with z = |Γ(si)| being the

cardinality of Γ:

Γ(si) = {γ1(si), γ2(si), . . . , γz(si)}
=

⋃
1≤i≤n
0≤j≤k

[P (si, drj(si))× {drj(si)}]

= {(pj , dj)|1 ≤ j ≤ z}
Now, assume for all si ∈ S the stream-setup tuple set Γ(si) is

given. We define a network-setup tuple Π = (π1, π2, . . . , πn),
where each entry πi corresponds to an entry γi ∈ Γ(si).
The main challenge now is to find an allocation for Π that

optimizes the network resource utilization. More precisely,

with γi = (pi, di), and l as a link in the network, the problem

is described as follows. Find all allocations Π that build the

following set NS of network setups:

NS = {Π | ∀l ∈ N : cap(l) ≥
n∑

i=1

di · x∗
i,l}

where the shared link indicator variable x∗
i,l is defined as

x∗
i,l =

{
1, l ∈ pi

0, otherwise

From this set NS take the Π that maximizes a predefined gain

function g(Π). This gain function can have different forms but

for the sake of simplicity it can be defined as:

g(Π) =

n∑
i=1

di

This means we define the optimization of the network resource

utilization as the process of providing as much data rate to the

clients as possible. Algorithm 1 shows a full-search approach

to find the optimum distribution. d∗ defines the currently

highest data rate found by the algorithm and Π∗ reflects the

corresponding network-setup. Lines 4 to 7 build the main loop

to check all possible combinations. Note that the descending

search order leads to results earlier, since all the stream-setup

tuple sets have the highest data rates at their end. In line 10

the algorithm checks if the paths of the streams have links in

common. If so, it is checked if the available link capacity is

sufficient to handle all stream data rate demands. In case the

capacity is not high enough, the current combination is omitted

and the next combination is considered (remember the shared

link indicator x∗
i,l from above). In line 22 it is checked if

the sum of provided data rates exceeds the currently highest

one (This check can be replaced through the application of a

different gain function). If so, the value and the network-setup

are stored in d∗ and Π∗, respectively.

Algorithm 1 Network-Optimization

1: procedure SOLVE(Γ(s1),Γ(s2), . . . ,Γ(sn))
2: d∗ = 0
3: Π∗ = (∅, ∅, . . . , ∅)
4: for each γ1 ∈ Γ(s1) in desc. order do
5: for each γ2 ∈ Γ(s2) in desc. order do
6: . . .
7: for each γn ∈ Γ(sn) in desc. order do
8: let (pi, di) = γi
9: let L =

⋂n
k=1 pk

10: if L �= ∅ then � shared links

11: congested = false
12: for each l ∈ L do
13: if cap(l) <

∑n
k=1 dk · x∗

k,l then
14: congested = true
15: break

16: end if
17: end for
18: if congested == true then
19: continue

20: end if
21: end if
22: if

∑n
k=1 dk > d∗ then

23: d∗ =
∑n

k=1 dk
24: Π∗ = (γ1, γ2, . . . , γn)
25: end if
26: end for
27: end for
28: end for
29: end procedure

A B

C

E

D

3

6 2

0.5

6

6

S1

R2 R1

S2

Fig. 4. The setup for network in of our example. The numbers on the links
state their capacity.

VI. APPLICATION SCENARIO

In this section we present an example in which the NRCS

is applied. Two senders S1 and S2 want to send their streams

s1 and s2 through the network to the receivers R1 and R2,

respectively. The corresponding network including the link

capacities is shown in figure 4. We assume bidirectional

links in the network where both directions provide the same

capacity. The senders subscribe to the NRCS by stating their

minimum and maximum possible data rates given in table

I. Given this information the NRCS starts to calculate a

network setup that satisfies the data rate requirements of the

streams with the available network resources. First, the NRCS

TABLE I
MINIMUM AND MAXIMUM DATA RATES OF THE STREAMS IN THE

EXAMPLE.

stream drmin drmax

s1 2 4
s2 1 3

TABLE II
A SELECTION OF NETWORK-SETUPS FOR THE EXAMPLE SCENARIO. BOLD

AND GRAY ROWS ARE POSSIBLE COMBINATIONS.

index dr(s1) pi(s1) dr(s2) pi(s2) dr(s1) + dr(s2)
..
9. 2 p1 2 p1 4
10. p1 p2
11. p2 p1

12. p2 p2

13. 3 p2 2 p1 5
14. p2 p2

15. 4 p2 2 p1 6
16. p2 p2

17. 2 p1 3 p1 5
18. p2 p1

19. 3 p2 3 p1 6
20. 4 p2 3 p1 7

calculates all possible paths over which the streams can be

routed through the network. For each stream there are two

possible paths assuming the minimum requested data rate.

These paths are p1(s1) = (AB,BD), p2(s1) = (AC,CD),
p1(s2) = (BA,AC), p2(s2) = (BD,DC). As each of these

paths has an associated maximum data rate, only a reduced set

of stream-setups makes sense for each stream. For example,

routing over p1(s1) is meaningful only if the data rate of

stream s1 is smaller or equal 2. Combining all sensible stream-

setups of s1 and s2 results in 20 network-setups from which a

selection is shown in table II. Note that the number of network-

setups is strictly dependent on the data rate granularity, the

number of possible paths according to these data rates, and

the overall number of streams in the network. To keep the

complexity low, it is possible to separate the network into

smaller, individually controlled network parts. Obviously, a

higher degree of separation decreases the optimum routing

result but decreases the computational complexity at the same

time. In this table you can see that the network-setup with

the maximum data rate of both streams is not feasible as

the shared link AC provides a capacity of only 6 whereas

the combination of both streams would require a capacity

of 7. Nevertheless, there are several possible combinations

from which the NRCS can choose according to an arbitrary

policy. In our case, the goal is to maximize the network

utilization so the network-setups with the largest overall data

rate dr(s1)+dr(s2) = 6 are selected. In case a secondary goal

is to provide fairness among the streams, the NRCS can choose

a network-setup where the variance of the stream data rates is

minimal. In this example this would result in the selection of

network-setup number 19. Choosing a network-setup can even

be based on contract agreements as streams can be mapped to

senders and/or receivers by means of their flow signature.

VII. CONCLUSION

In this paper we proposed NSCA which represents an

innovative way of rate control for congestion avoidance in

software-defined networks. We developed a signaling protocol

that is applied by the controlling plane of the SDN to provide

a network rate control service (NRCS). The NRCS can be

utilized by sender devices to obtain the available data rate. We

presented an algorithm to find a distribution of allowed data

rates and forwarding paths in a multi stream scenario which

can be tuned to accommodate various goals, such as maximum

network utilization, fairness, or QoS. Additionally, this proac-

tive scheme avoids congestion entirely before it happens. Also,

a traditional scheme can be used for rate control as fallback

in case the NRCS is unavailable. Further improvements can

be achieved with more sophisticated optimization algorithms

and can be part of future research in that area.

ACKNOWLEDGEMENT

The work presented in this paper was performed in the con-

text of the Software-Cluster projects EMERGENT and SINN-

ODIUM (www.software-cluster.org). It was partially funded

by the German Federal Ministry of Education and Research

(BMBF) under grant no. ”01IC10S01” and ”01IC12S01”. The

authors assume responsibility for the content.

REFERENCES

[1] Cisco Systems, Visual Networking Index, Entering the Zettabyte Era,
January 2013

[2] Wiegand, T.; Sullivan, G. J.; Bjontegaard, G.; Luthra, A., ”Overview of
the H.264/AVC video coding standard”, IEEE Transactions on Circuits
and Systems for Video Technology In Circuits and Systems for Video
Technology, IEEE Transactions on, Vol. 13, No. 7., 04 July 2003, pp.
560-576.

[3] ISO/IEC 23009-1:2012(E): Information technology - Dynamic adaptive
streaming over HTTP (DASH), International Organization for Standard-
ization, Geneva, Switzerland.

[4] Google, ”Inter-Datacenter WAN with centralized TE using SDN and
OpenFlow”, January 2013

[5] Awduche, D., Chiu, A., Elwalid, A., Widjaja, I., and X. Xiao, ”Overview
and Principles of Internet Traffic Engineering”, RFC 3272, May 2002.

[6] Rosen, E., Viswanathan, A., and R. Callon, ”Multiprotocol Label Switch-
ing Architecture”, RFC 3031, January 2001.

[7] Floyd, S., Henderson, T., and A. Gurtov, ”The NewReno Modification to
TCP’s Fast Recovery Algorithm”, RFC 3782, April 2004.

[8] Sangtae Ha, Injong Rhee and Lisong Xu, ”CUBIC: A New TCP-Friendly
High-Speed TCP Variant”, ACM SIGOPS Operating System Review,
Volume 42, Issue 5, July 2008, Page(s):64-74, 2008.

[9] Tan Kun, Jingmin Song, Qian Zhang, Sridharan, M., ”A Compound TCP
Approach for High-Speed and Long Distance Networks”, INFOCOM
2006, 25th IEEE International Conference on Computer Communications
Proceedings, April 2006.

[10] Handley, M., Floyd, S., Padhye, J., and J. Widmer, ”TCP Friendly Rate
Control (TFRC): Protocol Specification”, RFC 3448, January 2003.

[11] Ramakrishnan, K., Floyd, S., and D. Black, ”The Addition of Explicit
Congestion Notification (ECN) to IP”, RFC 3168, September 2001.

[12] Floyd, S., Jacobson, V., ”Random Early Detection gateways for Conges-
tion Avoidance”, IEEE/ACM Transactions on Networking, August 1993.

[13] Bellovin, S., ”The Security Flag in the IPv4 Header”, RFC 3514, April
1 2003.

