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ABSTRACT 

Image segmentation is a fundamental preprocessing step 

in multiple tasks for the recognition and detection of 

semantically meaningful objects. In the past decades 

numerous image segmentation algorithms have been 

proposed. However, complexities at and above 𝑂(𝑛2) 

make many of these computationally very expensive, 

several approaches require human input or have poor 

boundary recall. Among the state-of-the-art algorithms are 

superpixel segmentations, for which fast and fully 

automatic approaches exist. However, often scenes have 

content which cannot be segmented precisely based purely 

on color information. Novel image and video acquisition 

hardware can capture not only color, but also depth and 

infrared information. This additional information can be 

used to enhance existing segmentation algorithms. We 

present a novel multi-channel extension to existing 

superpixel segmentations which makes use of this 

additional information in order to improve the boundary 

recall by more than 11% while maintaining the same 

oversegmentation factor compared to a purely color based 

segmentation. 

1 INTRODUCTION 

Detecting, tracking and recognizing objects is a core 

problem of today’s computer vision research. 

Fundamental to this research is the segmentation of 

images into meaningful parts. Numerous image 

segmentation algorithms have been proposed in the past 

decade. Among these, the SLIC superpixel algorithm [1] 

has outperformed other approaches due to its run-time 

performance, nearly unsupervised processing and finally 

the good achievable boundary recall. 

However, often images contain content which cannot be 

segmented using only color information. This might be 

overlapping objects of the same color, mist hiding distant 

objects, or complex patterns obscuring object boundaries. 

Information exceeding the pure color information is 

necessary in such cases to still obtain meaningful and 

precise segmentations. Novel camera technologies capture 

such additional information, which can be used for image 

segmentation. The Motion Scene Camera [2], which we 

used for the data acquisition, captures not only color, but 

also depth and infrared information. 

This paper focuses on using the available infrared 

information for enhanced superpixel segmentation. Using 

additional infrared intensity values we can increase the 

boundary recall by over 11%, thus significantly 

increasing the boundary detection of the superpixel 

segmentation. 

In the following sections we will introduce related 

previous work in Section 2. The algorithmic extension of 

the superpixel algorithm in order to utilize such infrared 

information is described in Section 3. Our dataset, which 

is acquired by a novel camera for color and infrared 

capture, is introduced in Section 4. Experiments and 

experimental results are explained in Sections 5. 

Conclusions are drawn and possible future work is 

outlined in Section 6. 

2 RELATED WORK 

The importance of meaningful image segments to the 

human understanding of image content has been known 

since almost a century [3]. However, algorithmic 

development for image segmentation has started in the 

1980’s with the advance of digital image processing 

techniques. Among the first segmentation approaches 

were edge-based methods [4] or eigenvector-based 

approaches [5]. However, those methods were 

computationally expensive. In 2003 Felzenswalb and 

Huttenlocher have presented a graph-based image 

segmentation algorithm with the two major goals to 

“capture perceptually important groupings or regions” and 

at the same time “be highly efficient” [3]. Both goals are 

characteristic for superpixel algorithms. Next to graph 

based approaches like the aforementioned and geometric 

flow based algorithms [6] Achanta et al. have presented a 

Simple Linear Iterative Clustering (SLIC) algorithm for 

superpixel clustering in 2012 [1]. Due to its locally 

restrained search region SLIC superpixels are 

computationally very efficient and define the state-of-the-

art with respect to boundary recall. 



Employing infrared information for image segmentation is 

not a new idea. Texture based image segmentation 

approaches using near infrared (NIR) [7] as well as 

content classification using both, color and NIR [8] have 

been presented in recent years. Two core aspects in our 

research differ from already published approaches. First, 

SLIC superpixels currently present the state of the art, but 

superpixel extensions to NIR are currently unknown to the 

authors. Second, a SLIC extension is not only interesting, 

as this approach has superior boundary recall at a low 

computational complexity, but we will show that human 

input can further be minimized. 

A problem for the approach of using NIR for computer 

vision is the availability of such information. 

Traditionally, cameras are restricted to the human visual 

perception and therefore capture only RGB information. 

While most sensors of digital cameras are sensible in NIR, 

it requires a camera modification to acquire this data as 

well. Even after such a modification, traditional sensors 

can capture either RGB or NIR information, as the sensor 

architecture is designed to capture only three channels. 

In 2011 the SCENE project funded by the European 

Commission set out to capture and use additional 

environment information for computational videography. 

A core development in this project is the Motion Scene 

Camera (Figure 1), which captures color, depth and 

infrared information through the same optical system at 

the same time [2]. This novel hardware provides color and 

infrared information without spatial or temporal offset; a 

characteristic previously unavailable. Considering the 

infrared information utilized in this work, we decided to 

exploit the NIR light source which is attached to the 

camera and the second sensor’s capability to natively 

generate an NIR image. This means, we record the NIR 

image of a scene which represents only the amount of the 

reflected NIR light sent out by the light source. Hence the 

characteristics of this NIR image are typical for images 

taken under artificial LED lighting. First, there is 

quadratic light decrease for objects at increasing distances 

from the camera retaining constant reflectivity. Second, 

the spectrum of the NIR image is discrete and centered at 

850nm. This distinguishes our approach from using 

ambient NIR light sources. Last, the NIR image has a 

resolution of 160x90 pixels compared to the 1920x1080 

pixels available for the RGB image. This mismatch 

between the spatial resolutions of both sources is posing a 

problem for postproduction. Typically, RGB-guided 

upscaling filters are applied to deal with this kind of 

problem. However, we do not want to introduce RGB 

information into the NIR image which is inherently done 

using RGB-guided upscaling. Hence we decided to use 

bicubic upscaling only. We want to outline at this point 

that the improvements using our method are achieved with 

this kind of low information NIR images. 

 
Figure 1: Motion Scene Camera which captures Color, 

Infrared and Depth information through the same optical 

system 

In recent years, the research focus for superpixel shifted 

from still images towards video content in order to 

generate temporally and spatially consistent superpixels 

for video sequences, as e.g. presented in [9]. The idea to 

employ NIR information also for temporally consistent 

superpixel segmentation is therefore highly interesting; an 

issue we have approached in this paper as well. 

3 ALGORITHMIC EXTENSION 

Current superpixel clustering algorithms employ color and 

spatial information to generate superpixels. For each 

channel, the distance to the superpixel center is computed, 

where ∆ is the difference. Color information is converted 

into CIELab color space such that distances between 

colors closely correspond to subjectively perceived 

differences. In detail, SLIC superpixels presented by 

Achanta et al. [1] calculate the color distance 

 𝐷𝐶 = √∆𝐿2 + ∆𝑎2 + ∆𝑏2 (1) 

where 𝐿, 𝑎 and 𝑏 represent the Lab color channels. 

Furthermore, the spatial distance is calculated 

 𝐷𝑆 = √∆𝑥2 + ∆𝑦2 (2) 

where 𝑥, 𝑦 are the spatial parameters. Both distances, 𝐷𝐶  

and 𝐷𝑆, are combined to one single distance measure 

 𝐷 =  √𝐷𝐶
2 + 𝑚 ∙ 𝐷𝑆

2 (3) 

with 𝑚 as a weighting factor between color and spatial 

distances. The authors of [1] suggest 1 ≤ 𝑚 ≤ 40, but use 

𝑚 = 10 as an optimized compromise between superpixel 

compactness and boundary recall. 

We include the infrared information as a further channel 

into the distance measure, and set 

 𝐷𝐼 = √∆𝐼𝑅2 (4) 

where 𝐼𝑅 is the infrared information. We include this 

additional distance into distance 𝐷 by providing new 

weights between the different parts 

 𝐷 =  √𝑚 ∙ 𝐷𝑆
2 + 𝑛 ∙ 𝐷𝐶

2 + 𝑜 ∙ 𝐷𝐼
2 (5) 

Choosing fixed values for 𝑚, 𝑛 and 𝑜 does, however, not 

work satisfactorily. The parameters are set as: 𝑚 = 1, 

𝑛 = 𝑜 = 0.1. This results in the same compactness and 

boundary  recall  as  the  original  paper  if  either  color or  



 
Figure 2: Functions assigning parameter values according to 

edge pixels found in subimages 

infrared distance is 0, but becomes a lot more fuzzy if 

both, color and IR distance are large. Therefore, a 

dynamic allocation of weights is required. 

Thereby, we take the following basic approach. We 

measure the fidelity of a search space surrounding a 

superpixel, and assign weights according to the fidelity of 

the individual channels. First, we calculate the Laplacian, 

as given in Equation (6), on each color and IR channel. 

 ∆𝑓 =
𝜕2𝑓

𝜕𝑥2 +
𝜕2𝑓

𝜕𝑦2 (6) 

The Laplacian is a good detector of edges in an image. For 

the color information we combine the results for the three 

Lab channels using a logical OR operation, resulting in a 

single channel depicting edges in either of the L, a or b 

channel. 

The number 𝑔 of edge pixels in a subimage of size 

2𝑆 × 2𝑆 is bound by 0 ≤ 𝑔 ≤ 4𝑆2. Counting edge pixels 

is threshold based, and we found through subjective tests 

that a threshold 𝑡 = 0.05 returns good results for input 

values 𝑣 scaled to 0 ≤ 𝑣 ≤ 1. 

In further subjective tests, described in Subsection 3.1, we 

derived a function which assigns adequate parameters 𝑚, 

𝑛 and 𝑜 based on the different fidelity values of color and 

infrared information. 

3.1 Parameter Decision 

With the dynamic approach for the parameter settings 

described above only few decisions need to be taken in 

advance. First, it was observed that many structures are 

contained in both, color and infrared images. We therefore 

asked a group of people to identify the subjectively best 

tradeoff between compactness and boundary recall of 

superpixels, when distances were weighted with 𝑚 = 1, 

𝑛 = 𝑜 = 𝑥 where 1 ≤ 𝑥 ≤ 15. This subjective test 

returned an optimal value of 𝑥 = 7. Further, with 𝑚 = 10 

from [1], we set 1 ≤ 𝑛, 𝑜 ≤ 70 based on the number of 

edge pixels detected in a subimage surrounding a 

superpixel center. 

   
Figure 3: Effect of different compression functions, most 

linear (left) and most curved (right) from Figure 2 

To find a suitable function we derived a set of curves 

assigning output values between 1 ≤ 𝑛, 𝑜 ≤ 70 to input 

edge values of 0 ≤ 𝑔 ≤ 4𝑆2, as shown in Figure 2. A set 

of sample images segmented with the different curves was 

presented to several people, and their subjective decision 

for the best segmentation result was evaluated. The 

function given in Equation (7) was the result of this 

process. 

 𝑓(𝑔) =
69(2.25𝑙𝑛(

2200𝑔

𝑆2 +1)−2.25𝑙𝑛(
2200

𝑆2 +1))

(2.25𝑙𝑛(
2200∙106

𝑆2 +1)−2.25𝑙𝑛(
2200

𝑆2 +1))

+ 1 (7) 

This equation takes the number of edge pixels as input 𝑔 

and requires the additional parameter 𝑆, which 

corresponds to the subimage size and is fixed by the 

number of superpixels per image. The output 𝑓(𝑔) 

corresponds to the missing parameters 𝑛 and 𝑜 for RGB 

and IR respectively. The function 𝑓 is a modification of 

the 𝜇-law [10], with 𝜇 = 86.7 and 𝑉 = 10 fitted to the 

required range. Figure 3 shows the effect of choosing 

different functions. If the assignment is rather linear, the 

spatial weighting tends to be too high, resulting in too 

compact superpixels with little boundary recall. On the 

other hand, if the function assigns too high values for few 

edge pixels already, superpixels tend to become too 

irregularly shaped. 

4 DATASET 

A video sequence was captured by the Motion Scene 

Camera. This sequence was directed in a way to produce 

content that can show the benefit of using an additional IR 

channel. One scenario where additional infrared 

information can help is when objects of the same color 

overlap. In this specific video sequence a talent wearing a 

white shirt moves from a green background to a white 

background. Figure 4 shows two frames of this data set, 

one with the talent in front of the green wall, one with the 

talent in front of the white wall. As the video sequence 

was captured with the Motion Scene Camera through the 

same optical system, the color and infrared information 

are aligned perfectly, temporally as well as spatially. 

For this dataset a ground truth segmentation was created. 

The ground truth contains 10 different semantic objects; 

the green wall, the white wall, a wooden line connecting 

both wall pieces, the floor, the talent’s face and two hands, 

hair, shirt and pants. The ground truth corresponding to 

the frames in Figure 4 is shown in Figure 5. 



  
 

  
Figure 4: data set sample frames RGB and IR 

  
Figure 5: ground truth for frames in Figure 4 

5 EXPERIMENTS AND RESULTS 

Boundary recall is a value reflecting the amount of 

semantic image boundaries that an algorithm finds. We 

define boundary recall 𝑏𝑟 of a segmentation 𝑆 compared 

to a ground truth 𝑇 as the percentage of border pixels 

picked up by the segmentation algorithm, calculated as 

 𝑏𝑟(𝑆, 𝑇) =
𝑏𝑝(𝑆,𝑇)

𝑏𝑝(𝑇)
∙ 100% (8) 

where 𝑏𝑝(𝑆, 𝑇) are the boundary pixels of both, ground 

truth and segmentation, and 𝑏𝑝(𝑇) are the boundary pixels 

of only the ground truth. 

We have extended the implementation from [9] by our 

novel distance metric and created a temporally consistent 

segmentation of the input sequence. Figure 6 (top) depicts 

two segmentations of an input frame showing the talent in 

front of the white background without NIR information 

(left) and using available NIR information (right). In 

Figure 6 (bottom) superpixels belonging to the actor are 

colored black, those belonging to the background are 

colored white, and superpixels crossing the object 

boundaries are colored red. 

  

  
Figure 6: superpixel border recall without and with IR 

information using [11] extended by our distance metric 

 

Table 1: boundary recall without and with IR in front of 

green and white background for 400 superpixels using [11] 

 
w/o IR w/ IR 

green 95% 94% 

white 89% 95% 

The oversegmentation factor relates the number of 

superpixels in a segmentation 𝑆 to the number of segments 

in the corresponding ground truth𝑇. The oversegmentation 

factor is calculated as 

 𝑜𝑠(𝑆, 𝑇) =
1

𝑘
∑ 𝑟(𝑆, 𝑇𝑖)

𝑘
𝑖=1  (9) 

where 𝑘 is the number of image segments in the ground 

truth and 𝑟(𝑆, 𝑇𝑖) is the number of segments in 𝑆 

overlapping with segment 𝑖 from ground truth 𝑇. 

Due to their locally restricted search regions SLIC 

superpixels are – by default – oversegmenting image 

content. Oversegmentation increases the probability of 

finding the correct boundary, but comes at the cost of 

many insignificant boundaries. This is illustrated when 

looking at the two edge cases and the desired case. 

Case 1: every pixel is a superpixel 

In this case every pixel in 𝑆 is also a region boundary 

pixel. By default, each boundary pixel in 𝑇 has a 

corresponding boundary pixel in 𝑆, which results in a 

boundary recall 𝑏𝑟(𝑆, 𝑇) = 100%. As the number of 

pixels is usually significantly larger than the number 

of regions in 𝑇, it is 𝑜𝑠(𝑆, 𝑇) ≫ 1. 

Case 2: 𝑆 is only one region 

In this case every region 𝑇𝑖  overlaps with only one 

region in 𝑆. Therefore we have ∑ 𝑟(𝑆, 𝑇𝑖)
𝑘
𝑖=1 = 𝑘 and 

consequently 𝑜𝑠(𝑆, 𝑇) = 1. On the other hand there 

are no region boundaries in 𝑆, therefore 𝑏𝑟(𝑆, 𝑇) =
0%. 

Case 3: every region in 𝑆 matches a region in 𝑇 

Here all boundary pixels match, therefore 𝑏𝑝(𝑆, 𝑇) =
𝑏𝑝(𝑇) and 𝑏𝑟(𝑆, 𝑇) = 100%. At the same time each 

region 𝑇𝑖  overlaps with exactly one region in 𝑆, 

therefore ∑ 𝑟(𝑆, 𝑇𝑖)𝑘
𝑖=1 = 𝑘 and hence 𝑜𝑠(𝑆, 𝑇) = 1. 

A boundary recall value of 100% and at the same time an 

oversegmentation of 1 therefore is desirable. 

Finally, we employ a measure of compactness for 

superpixels, which was introduced by Schick et al. [12]. 

They introduce compactness of a segmentation 𝑐𝑜(𝑆) as 

 𝑐𝑜(𝑆) =
1

𝑘
∙ ∑ 𝑄𝑖

𝑘
𝑖=1  (10) 

with the isoperimetric coefficient of the 𝑖-th superpixel of 

a segmentation 𝑆 defined as 

 𝑄𝑖 =
4𝜋𝐴𝑖

𝐿𝑖
2  (11) 

where 𝐴𝑖 and 𝐿𝑖   are the area and the perimeter of the 𝑖-th 

superpixel respectively. 

Table 1 gives the boundary recall comparing a 

segmentation of the white shirt in front of white 

background and in front of green background. While the 



segmentation based purely on RGB works well when the 

white shirt is in front of the green background, the benefit 

or using additional IR information becomes clear when 

the white shirt is in front of the white background. 

Figure 7 shows the oversegmentation factor in relation to 

the boundary recall for segmentations without (green 

curve) and with (blue curve) infrared information. As 

expected, a small oversegmentation factor corresponds to 

a low boundary recall value, and the higher the 

oversegmentation the better the boundary recall. More 

interesting, however, is the gradient of the curve 

belonging to the segmentation process with infrared 

information which is continuously higher than the curve 

belonging to the segmentation process without additional 

infrared information. At an oversegmentation factor of 

roughly 4 we can enhance the boundary recall of only 

color based segmentation by more than 𝟏𝟏% through the 

additional use of NIR information. 

 
Figure 7: boundary recall vs. oversegmentation comparing 

segmentations with IR (blue line) to segmentations without 

IR information (green line) 

 

Figure 8: boundary recall vs. compactness comparing 

segmentations with IR (blue line) to segmentations without 

IR information (green line) 

Table 2: boundary recall without and with IR with 

brightness change and salt-and-pepper noise 

 
w/o IR w/ IR 

brightness 62% 80% 

noise 87% 95% 

    
Figure 9: brightness change (left) and salt-and-pepper noise 

(right) 

5.1 Robustness 

Often images are affected by different kinds of noise. We 

have evaluated the robustness of our approach with 

respect to Gaussian distributed salt and pepper noise as 

well as brightness changes. Figure 9 shows sample frames 

with both forms of image distortion applied. In Table 2 the 

boundary recall achievements for noisy and images and 

images affected by lighting changes are shown, all other 

parameters remain unchanged with respect to the results 

achieved in Table 1. While the segmentation is affected by 

the noise, it remains obvious that results achieved with the 

additional IR information are superior to segmentations 

based purely on RGB information.  

6 CONCLUSION AND FUTURE WORK 

The experiments described above show two major 

benefits. First and most important is that the use of 

additional information not visible to the human eye is 

useful for the segmentation of semantically meaningful 

objects. Object boundaries can be invisible in color space 

but prominent in infrared. 

Second, use of additional information channels enforces 

the use of dynamic parameter allocation. Using 

boundaries known from experiments on only color based 

segmentation, such dynamic parameter decisions reduce 

the required human input even compared to only color 

based segmentations. While the SLIC algorithm proposed 

in [1] requires an input image, the number of desired 

superpixels and the weighting factor 𝑚 to weight the color 

information, our implementation requires only the input 

image and the desired number of superpixels. 

Our experiments with respect to robustness allow the 

conclusion that in presence of noise or changing lighting 

conditions boundary recall may vary. However, 

independent of the amount of initial RGB information 

(clear, noisy, change of brightness) employing additional 

infrared information yields superior segmentations. 

Looking at the proposed way of adding the additional 

infrared channel to the information the idea to add further 

information channels suggests itself. In addition to color 



and IR information the Motion Scene Camera provides 

depth information per pixel. Depth information was 

already applied for enhanced superpixel segmentation [13] 

[14], and the addition of this information to our algorithm 

and comparison to existing implementations will yield 

new insights into the use of additional information. 

Traditional cameras can also capture infrared information 

with their native RGB sensors. In order to do that, a filter 

usually blocking NIR needs to be replaced by an NIR-pass 

filter. As shown in Figure 10 the NIR area does not 

necessarily be considered as one additional channel, but 

taking the blue channel and the red channel independently 

it is possible to separate NIR at ~7000𝑛𝑚 and 

~8000𝑛𝑚, thus yielding two additional channels. 

Furthermore, using thermal imaging systems, which 

capture infrared between 1𝜇𝑚 and 1𝑚𝑚, can offer a 

whole new range of information invisible to the human 

eye, but interesting for object segmentation. 

 
Figure 10: sensibility of color channels of traditional camera 

without a hot mirror filter [15] 
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