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Abstract

According to the FCC, spectrum allocation will be one of the problems of future telecom-

munication systems. Indeed, the available parts of the spectrum have been assigned

statically to some applications such as mobile networks and broadcasting systems and

finding a proper operating band for new systems is difficult. These telecommunication

systems are called primary users. However primary users do not always use their en-

tire bandwidth and therefore a lot of spectrum holes can be detected. These spectrum

holes can be utilized for undefined systems called secondary users. Federal communica-

tion commission (FCC) introduced cognitive radio which detects these holes and assigns

them to secondary users.

There are several techniques for detention of signals such as energy based detection,

matched filter detection and cyclostationary based feature detection. Cyclostationary

based feature detection as one of the most sensitive methods for signal detection can

be used for detection and classification of different systems. However, traditional multi-

cycle and single-cycle detectors suffer from high complexity. Fortunately, using some

priory knowledge about the signal, this shortcoming can be solved.

In this thesis, signals of DVB-T2 as a broadcasting system and 3GPP LTE and IEEE

802.16 (WiMAX) as mobile networks has been evaluated and two cyclostationary based

algorithm for detection and classification of these signals are proposed.
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Chapter 1

Introduction

1.1 Motivation

The dramatic growth of communication services increases the demand for spectrum allo-

cation. Today all part of the accessible spectrum has been statically assigned to licensed

applications that are known as primary users (PU). According to the Federal Communi-

cations Commission (FCC), by increasing the data traffic, the spectrum allocation will

be the problem of future telecommunication systems. Indeed, we are in danger of run-

ning out of spectrum. However, based on the FCC report on spectrum efficiency [20], a

large amount of white space can be monitored in some applications.

In one of the researches on spectrum issues, the spectrum occupancy around Berkely is

measured [4]. The interference map is shown in Fig. 1.1 and percentage of occupancy

showed in Table 1.1. The table shows that the most parts of the spectrum is empty and

can be utilized by secondary users (SU). Secondary users are users that are not defined

in static spectrum allocation maps. The amazing observation relates even within the

busiest part of the spectrum between 0-1 GHz, only about 50% of the spectrum is

occupied by the primary user. The other parts of the spectrum have more free spaces

e.g. within the 4-5 GHz, only 0.128 % of spectrum is occupied. Therefore a lot of white

space can be detected and used by secondary users.

Table 1: Usage percentage of spectrum taken in downtown Berkeley

Band (Hz) 0-1G 1-2G 2-3G 3-4G 4-5G 5-6G

Percentage (%) 54.4 35.1 7.6 0.25 0.128 4.6

To utilize the spectrum holes, Federal Communications Commission introduced Cogni-

tive Radio. The cognitive radio is a self-aware communication system that can detect free
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Figure 1.1: Interference map between 0-6GHz

spectrum spaces and can assign them to other purposes. Haykin presented a complete

definition for cognitive radio in [22]:

”Cognitive radio is an intelligent wireless communication system that is aware of its sur-

rounding environment (i.e., outside world), and uses the methodology of understanding-

by-building to learn from the environment and adapt its internal states to statistical

variations in the incoming radio frequency stimuli by making corresponding changes in

certain operating parameters (e.g. transmit power, carrier frequency and modulation

strategy) in real-time, with two primary objectives in mind: (i.) highly reliable com-

munication whenever and wherever needed and (ii.) efficient utilization of the radio

spectrum.”

Broadcasting systems and mobile networks form the dominant part of communications

and occupy a considerable portion of the spectrum. Therefore utilizing their spectrum

for cognitive radio is subject of several studies. DVB as a well-known standard for broad-

casting has been implemented in several countries and is widely used. Forth generation

of mobile networks (4G) provides modern and flexible systems for user and operators.

Two well known standards defined in frame work of 4G are WiMAX and 3GPP LTE.

WiMAX is a global standard for broadband networks and provides affordable long-range

data and high quality communications. The next step in 3G services is 3GPP long term

evolution (LTE) that provides higher data rates, better coverage, better multipath, mo-

bility, and power performance as well as the higher level of security.
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For each of these three systems, special operating frequency band has been assigned stat-

ically. However allocated frequency bands of DVB, WiMAX and 3GPP LTE has partial

interference and the coexistence issue is the subject of some researches as discussed in

[39]. Therefore cognitive radio system should be able to discriminate between these sig-

nals and find the spectrum holes. Furthermore, it is important that the cognitive radio

can detect the desired primary users without considering the spectrum map.

The spectrum detection is the first step in a cognitive radio system. The detection

can be done based on the signal features such as energy, shape and periodicity. There

are different techniques for spectrum sensing in CR systems such as energy detection,

matched filter detection, covariance based detection, cyclostationary feature detection

and wavelet based detection. These methods are partially discussed in [6, 48, 49, 50].

The simplest method is energy detection that has been widely used in different telecom-

munication systems. In energy detection, the existence of a signal can be evaluated

without priori knowledge about the signal. Usually for implementation, the energy of

the received signal in special interval is compared with a threshold. The disadvantage

of this method is sensitivity of threshold to changing the noise and interference which

results in wrong detection.

The second approach is matched filter detection that maximizes the signal to noise ratio

(SNR) to detect the desired signal using the priori knowledge about the signal. In this

method that is usually used in radar, the input signal is correlated with a known signal

to discriminate between the input signal and the noise or interference. The performance

of this method is dramatically decreased when the parameters of the desired signal are

not previously known. This method also needs timing, synchronization and equalization

before detection.

The third type of spectrum sensing methods is covariance based detection. This method

differentiates between signal and noise based on this fact that signal generates more

correlations than the noise. For implementation, the received signal covariance matrix

should be calculated and the decision should be made based on some thresholds. [48]

The advantage of this method is working under low SNR without priori knowledge about

the signal however the detection of type of the signal is an issue.

The forth method for signal detection is cyclostationary based feature detection. In this

method, periodic features of signals are determined by calculating cyclic autocorrelation

function (CAF) and spectral correlation function (SCF). The well-known cyclostationary

based detector is multi-cycle detector [15]. The cyclostationary features are computed

and summed for all cyclic frequencies in CAF or SCF. This method differentiates be-

tween signal, noise and interference. Unfortunately, despite its high sensitivity, this
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detector suffers from high complexity. However, it is possible to reduce the complexity

of this method by computing some special lags or lines of CAF or SCF that include the

dominant features.

The fifth method is wavelet detection and is used for wideband signals. Wavelet detection

employs the wavelet transform of the power spectral density (PSD) of input signal. The

search algorithm in this technique finds the singularities of PSD to find the white space.

This method is computationally expensive.

1.2 Thesis overview

The main contribution of this thesis is to find a solution for discrimination and classifi-

cation of broadcast and 4G signals. For case of broadcast signal, DVB-T2 and for case

of 4G signals, WiMAX and 3GPP LTE are studied. The method used for detection of

signals is cyclostationary based feature detection since it benefits from high sensitivity

and by considering priori knowledge about the signal, the complexity can be reduced.

The cyclostationary based approach for detection of signals is explained in Chapter 2.

In Chapter 2, the system model of DVB-T2, WiMAX and 3GPP LTE has been elabo-

rated. Discrimination of mentioned signals based on cyclic prefix has been mentioned

in Chapter 4. Discrimination based on the pilot structure is discussed in Chapter 5.

Finally, this thesis ends with Conclusion and Future work in Chapter ??.



Chapter 2

Cyclostationary Based Signal

Detection

Several of natural signals can be modeled as stationary. Stationary processes are stochas-

tic processes whose statistics does not change with time. However in some signals, the

statistics are changed periodically. They can be modeled as cyclostationary processes.

Wide-sense cyclostationary processes are defined as processes whose mean and autocor-

relation vary periodically in time. Many of natural and manmade processes generate

cyclostationary such as revolution and rotation of planets and on pulsation of stars [47]

and gear rotation [10]. In telecommunication even though the raw data is a stationary

process, signals modulated with carriers, pulse train, mapping or cyclic prefix exhibits

wide-sense cyclostationary process.

Cyclostationary feature detection has been extensively studied in [13, 16] and its per-

formance is evaluated in [17]. In this chapter a brief review on necessary aspects and

definitions of this topic is presented. Fundamentals of cyclostationary feature detection

are explained in section 2.1. Spectrum estimation based on cyclostationary is discussed

in section 2.2 and low complexity cyclostationary detection briefly mentioned in sec-

tion 2.3.

2.1 Fundamentals of Cyclostationary Feature Detection

One of the features of signals that can be used for detection is periodicity. A lot of

signals have first order periodicity such as simple sine wave. First order periodicity can

be defined as:

x(t) = x(t+ T ). (2.1)

5
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where x(t) is the periodic signal and T is the period of the signal. Any first order

periodic signal can be represented in terms of Fourier coefficients in frequency domain:

X(t) =
∑
α

aα.e
j2παt (2.2)

where α shows the frequency and is integer multiple of fundamental frequency α0 = 1/T ,

aα is Fourier coefficient corresponding to frequency α and t shows the time. Fig. 2.1

illustrates the Fourier coefficients.

t 
… … 

f 

a-3 
a1 

a3 
a-1 

0 1/T0 -1/T0 

2/T0 -2/T0 

3/T0 -3/T0 

Fourier 

a-2 a2 

Figure 2.1: Fourier coefficients for first order periodic signal, from [38]

Although carrier signals are usually periodic, the messages are not periodic and therefore

modulated signals do not show the first order periodicity. For example by considering

x(t) = a(t)cos(2πft) where a(t) is the message and cos(.) is the modulating signal, we

simply observe that x(t) is not first order periodic signal. A well designed example is

shown in Fig. 2.2. In this figure, a sample of a modulated signal is shown.

t t+τ 

τ τ 

t+T0 t+T0+τ 
T0 

τ 

x(t) 

Figure 2.2: Modulated signals usually show second order periodicity, from [38]

However in most of these signals, mean and autocorrelation vary periodically. When

the autocorrelation of one signal varies periodically with time, the process is called

wide-sense cyclostationary. Since in these processes, the autocorrelation is a periodic

functions, it can be written as

Rxx(t, τ) = Rxx(t+ T0, τ). (2.3)
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where

Rxx(t, τ) = E[x(t+
τ

2
)x∗(t− τ

2
)] (2.4)

is called the autocorrelation function. Like first order periodic signals, periodic autocor-

relation can be represented in terms of Fourier series

Rxx(t, τ) =
∑
α

Rαx(τ).ej2παt (2.5)

where

Rαxx(τ) = lim
T→∞

1

T

∫ T/2

−T/2
Rxx(t, τ).e−j2παt dt (2.6)

is the cyclic autocorrelation function (CAF) of x(t) and α is called cycle frequency

and equals to n/T0, n = 0,±1,±2, ...,±∞. CAF shows cyclic features for harmonics of

fundamental frequency 1/T0. The conventional limit autocorrelation can be achieved by

substitution of α = 0. The conjugate autocorrelation function of x(t) is defined as

Rxx∗(t, τ) = E[x(t+
τ

2
)x(t− τ

2
)] (2.7)

and the conjugate cyclic autocorrelation would be

Rαxx∗(τ) = lim
T→∞

1

T

∫ T/2

−T/2
Rxx∗(t, τ).e−j2παt dt (2.8)

The Wiener-Khinchin theorem states that the Fourier transform of autocorrelation func-

tion is the power spectral density (PSD) of corresponding signal which is

Sxx(f) =

∫ ∞
−∞

Rxx(τ).e−j2πfτ dτ (2.9)

where Rxx(τ) is the special case of Rαxx(τ) when α = 0. The general case of above

relation which shows the spectral correlation function (SCF) of x(t) and named spectral

correlation function (SCF) is given by

Sαxx(f) =

∫ ∞
−∞

Rαxx(τ).e−j2πfτ dτ (2.10)

that is also called cyclic Wiener relation. The conjugate cyclic Winer relation is defined

as

Sαxx∗(f) =

∫ ∞
−∞

Rαxx∗(τ).e−j2πfτ dτ (2.11)
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Above relations clearly show that each line of SCF is the Fourier transform of corre-

sponding line of CAF with the same α. CAF and its Fourier transform SCF, are two

dimensional transforms depending on α and τ or f which show the cyclic features of

a signals based on their cyclostationary class. The type of process depends on Rαxx(τ)

for different values of α. When only for α = 0, Rαxx(τ) 6= 0, the process is called

purely stationary while when only for all integer/T0, Rαxx(τ) 6= 0 the process is purely

cyclostationary [14].

Cyclostationary features overlap in PSD. The overlapping features in PSD, can be de-

tected in cycle frequencies that are non-overlapping [15]. Generally, non-cyclostationary

noises do not generate any component in cyclic frequencies except α = 0 which is PSD

while different types of modulation based on modulating carrier, show cyclic features in

different cyclic frequencies which originates from preservation of the phase and frequency

information in cyclostationary analysis.

2.2 Spectrum Estimation

Most of processes in new telecommunication systems should be done in discrete domain.

Reduction of complexity is the key point in designing system in this domain. In order

to estimate the cyclic spectrum, different methods has been discussed in [3, 12, 35].

The sensitivity of different cyclostationary based spectrum sensing methods has been

evaluated in [29].

In the first method explained in [12, 33], to measure the power spectral density (PSD), we

can pass the signal through several narrow band filters and then we measure the average

power using moving average filter. Therefore for any special part of the spectrum we

have

Sxx(f) = lim
W→0

1

W

∫ ∞
−∞
|hfW (t)⊗ x(t)|2dt (2.12)

where hfW (t) is the impulse response of band pass filter with central frequency of f

and bandwidth W . For case of spectral correlation (SCF), we can use the frequency

translated signals in equation (2.13). This method is illustrated in Fig. 2.3. In this

method we use a set of filters with different central frequency to measure the SCF.

Sxx(f) = lim
W→0

1

W

∫ ∞
−∞

(hfW (t)⊗ x(t).e−jπαt).(hfW (t)⊗ x(t).e+jπαt)∗dt (2.13)
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BPF 

X(t) 

BPF 
u(t) 

v(t) 
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α

(.)T 

Figure 2.3: The first method for measurement of the spectral correlation

In the second method explained in [12, 33], we use a special interpretation of CAF that

is

Sαxx(f) = lim
∆f→0

lim
∆t→∞

1

∆t

∫ ∆t/2

−∆t/2
∆fX1/∆f (t, f + α/2).X∗1/∆f (t, f − α/2)dt (2.14)

where X1/∆f (t, v) is called the short time Fourier transform for signal x(t) and can be

written as

X1/∆f (t, v) =

∫ t+1/∆f

t−1/∆f
x(u).e−j2πvudu (2.15)

Since implementation of equation (2.14) is difficult, we can evaluate cyclic periodogram

as

Sαxx1/∆f (f) = ∆fX1/∆f (t, f + α/2).X∗1/∆f (t, f − α/2) (2.16)

where ∆f is a dummy parameter and can be considered as T = 1/∆f . Equation (2.16)

is the Fourier transform of the cyclic correlogram that can be driven as

RαxxT (t, τ) =
1

T

∫ t+(T+|τ |)/2

t−(T−|τ |)/2
x(u+ τ/2).x(u− τ/2).e−j2παudu (2.17)

A well-known method for implementation of SCF is the spectrally smoothed cyclic pe-

riodogram that can be written as
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Sαxx∆t(t, f)∆f =
1

∆f

∫ f+∆f/2

f−∆f/2
Sαx∆t(t, v)dv (2.18)

It should be notified that to achieve a better estimation of SCF, the observation interval

∆t should be increased and the size of smoothing window ∆f should be decreased.

Sαxx(f) = lim
∆f→0

lim
∆t→∞

Sαxx∆t(t, f)∆f (2.19)

Using Fast Fourier Transform (FFT) algorithms, equation (2.19) can be efficiently im-

plemented.

S̃αx∆t(t, f)∆f =
1

M

v=(M−1)/2∑
v=−(M−1)/2

1

∆t
X̃∆t(t, f + α/2 + vFs)

.X̃∗∆t(t, f − α/2 + vFs) (2.20)

where

X̃(t, f) =
N−1∑
k=0

a∆t(kTs).x(t− kTs).e−j2πf(t−kTs) (2.21)

X̃(t, f) is the sliding DFT, a∆t(kTs) is the data tapering window, ∆f = Mfs is the

smoothing interval and fs is sampling frequency. The FFT based spectral smoothing

method has been illustrated in Fig. 2.4.

Correlation  

& Smoothing 

X(f) 
N-Point FFT 

)(
)(

α
α

+
−

fX
fXx(t) SCF 

Figure 2.4: FFT based spectral smoothing for measurement of spectral correlation

It is obvious that when the observation interval increases, the better estimation of cyclic

features is generated. The Matlab pseudocode for estimation of SCF and CAF based

on the equation (2.16) and (2.17) are presented in Table 2.2 and Table 2.2, respectively.
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Table 1: Matlab pseudocode for estimation of SCF

Step 1: Dividing the signal into N frames. The number of frames (N) is
the length of signal diving over window size.

Step 2: Taking the FFT of each frame that is XT

Step 3: Computing conjugate of XT that is X∗T
Step 4: Shifting XT to +α/2 and X∗T to −α/2 using circular shift

Step 5: Computing SαxT (f)∆f∆t = ∆fXT (f + α/2).X∗T (f − α/2)

Step 6: Taking the average value of N frames to achieve SαxT (f)∆f

Step 7: Passing the signal into the moving average filter to achieve
SαxT (f)

Step 8: Returning to step 4 and repeating the whole process for all cyclic
frequencies α

Table 2: Matlab pseudocode for estimation of CAF

Step 1: Dividing the signal into N frames. The number of frames (N) is
the length of signal diving over window size.

Step 2: Computing a(t) = 〈x(t).e−j2παt〉 where x(t) includes one frame.

Step 3: Computing the correlation of a(t) and x(t) to achieveRαxx(τ)∆t∆τ

Step 4: Taking the average value of N frames to achieve Rαxx(τ)∆τ

Step 5: Taking the moving average filter to achieve Rαxx(τ)

Step 6: Returning to step 2 and repeating the whole process for all cyclic
frequencies α.

2.3 Complexity Reduction

By achieving some priori knowledge about the signal, the complexity of cyclostationary

based feature detection method can be reduced. For example, in case that the position

of dominant and viable peaks of a signal are known, we can compute just these special

positions to check the presence of the signal. In Chapter 4, detection of OFDM signal

based on the peak which lies in useful time of an OFDM symbol is discussed. The

position of dominate peaks for different signals and modulations are dissimilar. There-

fore, it is possible to discriminate between signals based on the position and hight of

peaks. In this case, cyclostationary feature detection plays the role of a classifier and

cyclostationary feature space is the classification medium. Some of efforts for designing

low complexity cyclostationary based detector are mentioned in [1, 19].
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